2012, 32(5): 1575-1595. doi: 10.3934/dcds.2012.32.1575

Global linearization of periodic difference equations

1. 

Dept. de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona, Spain, Spain

2. 

Dept. de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona

Received  November 2010 Revised  March 2011 Published  January 2012

We deal with $m$-periodic, $n$-th order difference equations and study whether they can be globally linearized. We give an affirmative answer when $m=n+1$ and for most of the known examples appearing in the literature. Our main tool is a refinement of the Montgomery-Bochner Theorem.
Citation: Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575
References:
[1]

R. M. Abu-Saris and Q. M. Al-Hassan, On global periodicity of difference equations,, J. Math. Anal. Appl., 283 (2003), 468. doi: 10.1016/S0022-247X(03)00272-5.

[2]

K. I. T. Al-Dosary, Global periodicity: An inverse problem,, Appl. Math. Lett., 18 (2005), 1041. doi: 10.1016/j.aml.2003.12.010.

[3]

F. Balibrea and A. Linero, Some new results and open problems on periodicity of difference equations,, in, 350 (2006), 15.

[4]

F. Balibrea and A. Linero, On the global periodicity of some difference equations of third order,, J. Difference Equ. Appl., 13 (2007), 1011. doi: 10.1080/10236190701388518.

[5]

F. Balibrea, A. Linero Bas, G. Soler López and S. Stević, Global periodicity of $x_{n+k+1}=f_k(x_{n+k})...f_2(x_ {n+2})f_1(x_{x+1})$,, J. Difference Equ. Appl., 13 (2007), 901. doi: 10.1080/10236190701351144.

[6]

R. H. Bing, A homeomorphism between the $3$-sphere and the sum of two solid horned spheres,, Ann. of Math. (2), 56 (1952), 354. doi: 10.2307/1969804.

[7]

R. H. Bing, Inequivalent families of periodic homeomorphisms of $E_3$,, Ann. of Math. (2), 80 (1964), 78. doi: 10.2307/1970492.

[8]

J. S. Cánovas, A. Linero and G. Soler, A characterization of $k$-cycles,, Nonlinear Anal., 72 (2010), 364. doi: 10.1016/j.na.2009.06.070.

[9]

A. Cima, A. Gasull and V. Mañosa, Global periodicity and complete integrability of discrete dynamical systems,, J. Difference Equ. Appl., 12 (2006), 697. doi: 10.1080/10236190600703031.

[10]

A. Cima, A. Gasull and F. Mañosas, On periodic rational difference equations of order $k$,, J. Difference Equ. and Appl., 10 (2004), 549. doi: 10.1080/10236190410001667977.

[11]

A. Cima, A. Gasull and F. Mañosas, On Coxeter recurrences,, J. Difference Equ. Appl., ().

[12]

P. E. Conner and E. E. Floyd, On the construction of periodic maps without fixed points,, Proc. Amer. Math. Soc., 10 (1959), 354. doi: 10.1090/S0002-9939-1959-0105115-X.

[13]

A. Constantin and B. Kolev, The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere,, Enseign. Math. (2), 40 (1994), 193.

[14]

H. S. M. Coxeter, Frieze patterns,, Acta Arith., 18 (1971), 297.

[15]

M. Csörnyei and M. Laczkovich, Some periodic and non-periodic recursions,, Monatshefte für Mathematik, 132 (2001), 215. doi: 10.1007/s006050170042.

[16]

R. Haynes, S. Kwasik, J. Mast and R. Schultz, Periodic maps on $\R^7$ without fixed points,, Math. Proc. Cambridge Philos. Soc., 132 (2002), 131.

[17]

J. M. Kister, Differentiable periodic actions on $E^8$ without fixed points,, Amer. J. Math., 85 (1963), 316. doi: 10.2307/2373217.

[18]

M. Kuczma, B. Choczewski and R. Ger, "Iterative Functional Equations,", Encyclopedia of Mathematics and its Applications, 32 (1990).

[19]

R. P. Kurshan and B. Gopinath, Recursively generated periodic sequences,, Canad. J. Math., 26 (1974), 1356. doi: 10.4153/CJM-1974-129-6.

[20]

B. D. Mestel, On globally periodic solutions of the difference equation $x_{n+1}=f(x_n)$/$x_{n-1}$,, J. Difference Equations and Appl., 9 (2003), 201. doi: 10.1080/1023619031000061061.

[21]

D. Montgomery and L. Zippin, "Topological Transformation Groups,'', Interscience Publishers, (1955).

[22]

R. Plastock, Homeomorphisms between Banach spaces,, Transactions of the American Mathematical Society, 200 (1974), 169. doi: 10.1090/S0002-9947-1974-0356122-6.

show all references

References:
[1]

R. M. Abu-Saris and Q. M. Al-Hassan, On global periodicity of difference equations,, J. Math. Anal. Appl., 283 (2003), 468. doi: 10.1016/S0022-247X(03)00272-5.

[2]

K. I. T. Al-Dosary, Global periodicity: An inverse problem,, Appl. Math. Lett., 18 (2005), 1041. doi: 10.1016/j.aml.2003.12.010.

[3]

F. Balibrea and A. Linero, Some new results and open problems on periodicity of difference equations,, in, 350 (2006), 15.

[4]

F. Balibrea and A. Linero, On the global periodicity of some difference equations of third order,, J. Difference Equ. Appl., 13 (2007), 1011. doi: 10.1080/10236190701388518.

[5]

F. Balibrea, A. Linero Bas, G. Soler López and S. Stević, Global periodicity of $x_{n+k+1}=f_k(x_{n+k})...f_2(x_ {n+2})f_1(x_{x+1})$,, J. Difference Equ. Appl., 13 (2007), 901. doi: 10.1080/10236190701351144.

[6]

R. H. Bing, A homeomorphism between the $3$-sphere and the sum of two solid horned spheres,, Ann. of Math. (2), 56 (1952), 354. doi: 10.2307/1969804.

[7]

R. H. Bing, Inequivalent families of periodic homeomorphisms of $E_3$,, Ann. of Math. (2), 80 (1964), 78. doi: 10.2307/1970492.

[8]

J. S. Cánovas, A. Linero and G. Soler, A characterization of $k$-cycles,, Nonlinear Anal., 72 (2010), 364. doi: 10.1016/j.na.2009.06.070.

[9]

A. Cima, A. Gasull and V. Mañosa, Global periodicity and complete integrability of discrete dynamical systems,, J. Difference Equ. Appl., 12 (2006), 697. doi: 10.1080/10236190600703031.

[10]

A. Cima, A. Gasull and F. Mañosas, On periodic rational difference equations of order $k$,, J. Difference Equ. and Appl., 10 (2004), 549. doi: 10.1080/10236190410001667977.

[11]

A. Cima, A. Gasull and F. Mañosas, On Coxeter recurrences,, J. Difference Equ. Appl., ().

[12]

P. E. Conner and E. E. Floyd, On the construction of periodic maps without fixed points,, Proc. Amer. Math. Soc., 10 (1959), 354. doi: 10.1090/S0002-9939-1959-0105115-X.

[13]

A. Constantin and B. Kolev, The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere,, Enseign. Math. (2), 40 (1994), 193.

[14]

H. S. M. Coxeter, Frieze patterns,, Acta Arith., 18 (1971), 297.

[15]

M. Csörnyei and M. Laczkovich, Some periodic and non-periodic recursions,, Monatshefte für Mathematik, 132 (2001), 215. doi: 10.1007/s006050170042.

[16]

R. Haynes, S. Kwasik, J. Mast and R. Schultz, Periodic maps on $\R^7$ without fixed points,, Math. Proc. Cambridge Philos. Soc., 132 (2002), 131.

[17]

J. M. Kister, Differentiable periodic actions on $E^8$ without fixed points,, Amer. J. Math., 85 (1963), 316. doi: 10.2307/2373217.

[18]

M. Kuczma, B. Choczewski and R. Ger, "Iterative Functional Equations,", Encyclopedia of Mathematics and its Applications, 32 (1990).

[19]

R. P. Kurshan and B. Gopinath, Recursively generated periodic sequences,, Canad. J. Math., 26 (1974), 1356. doi: 10.4153/CJM-1974-129-6.

[20]

B. D. Mestel, On globally periodic solutions of the difference equation $x_{n+1}=f(x_n)$/$x_{n-1}$,, J. Difference Equations and Appl., 9 (2003), 201. doi: 10.1080/1023619031000061061.

[21]

D. Montgomery and L. Zippin, "Topological Transformation Groups,'', Interscience Publishers, (1955).

[22]

R. Plastock, Homeomorphisms between Banach spaces,, Transactions of the American Mathematical Society, 200 (1974), 169. doi: 10.1090/S0002-9947-1974-0356122-6.

[1]

Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315

[2]

Małgorzata Migda, Ewa Schmeidel, Małgorzata Zdanowicz. Periodic solutions of a $2$-dimensional system of neutral difference equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 359-367. doi: 10.3934/dcdsb.2018024

[3]

John Erik Fornæss. Periodic points of holomorphic twist maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1047-1056. doi: 10.3934/dcds.2005.13.1047

[4]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[5]

B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835

[6]

Grzegorz Graff, Michał Misiurewicz, Piotr Nowak-Przygodzki. Periodic points of latitudinal maps of the $m$-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6187-6199. doi: 10.3934/dcds.2016070

[7]

Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399

[8]

Weiwei Ding, Xing Liang, Bin Xu. Spreading speeds of $N$-season spatially periodic integro-difference models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3443-3472. doi: 10.3934/dcds.2013.33.3443

[9]

Jean Mawhin. Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1065-1076. doi: 10.3934/dcdss.2013.6.1065

[10]

V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263

[11]

Daniel Wilczak, Piotr Zgliczyński. Topological method for symmetric periodic orbits for maps with a reversing symmetry. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 629-652. doi: 10.3934/dcds.2007.17.629

[12]

Massimiliano Berti, M. Matzeu, Enrico Valdinoci. On periodic elliptic equations with gradient dependence. Communications on Pure & Applied Analysis, 2008, 7 (3) : 601-615. doi: 10.3934/cpaa.2008.7.601

[13]

Daniele Cassani, Antonio Tarsia. Periodic solutions to nonlocal MEMS equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 631-642. doi: 10.3934/dcdss.2016017

[14]

Peter Giesl, Martin Rasmussen. A note on almost periodic variational equations. Communications on Pure & Applied Analysis, 2011, 10 (3) : 983-994. doi: 10.3934/cpaa.2011.10.983

[15]

Dixiang Cheng, Zhengrong Liu, Xin Huang. Periodic solutions of a class of Newtonian equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1795-1801. doi: 10.3934/cpaa.2009.8.1795

[16]

Vincenzo Ambrosio, Giovanni Molica Bisci. Periodic solutions for nonlocal fractional equations. Communications on Pure & Applied Analysis, 2017, 16 (1) : 331-344. doi: 10.3934/cpaa.2017016

[17]

Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Superstable periodic orbits of 1d maps under quasi-periodic forcing and reducibility loss. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 589-597. doi: 10.3934/dcds.2014.34.589

[18]

Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301

[19]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[20]

Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]