• Previous Article
    Traveling wave solution for a lattice dynamical system with convolution type nonlinearity
  • DCDS Home
  • This Issue
  • Next Article
    Asymptotic behavior of solutions to a one-dimensional full model for phase transitions with microscopic movements
2012, 32(1): 125-166. doi: 10.3934/dcds.2012.32.125

Spectral analysis for transition front solutions in Cahn-Hilliard systems

1. 

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, United States, United States

Received  July 2010 Revised  March 2011 Published  September 2011

We consider the spectrum associated with the linear operator obtained when a Cahn--Hilliard system on $\mathbb{R}$ is linearized about a transition wave solution. In many cases it's possible to show that the only non-negative eigenvalue is $\lambda = 0$, and so stability depends entirely on the nature of this neutral eigenvalue. In such cases, we identify a stability condition based on an appropriate Evans function, and we verify this condition under strong structural conditions on our equations. More generally, we discuss and implement a straightforward numerical check of our condition, valid under mild structural conditions.
Citation: Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125
References:
[1]

N. D. Alikakos, S. I. Betelu, and X. Chen, Explicit stationary solutions in multiple well dynamics and non-uniqueness of interfacial energy densities,, European J. of Applied Mathematics, 17 (2006), 525. doi: 10.1017/S095679250600667X.

[2]

N. D. Alikakos and G. Fusco, On the connection problem for potentials with several global minima,, Indiana Univ. Math. J., 57 (2008), 1871. doi: 10.1512/iumj.2008.57.3181.

[3]

J. Alexander, R. Gardner and C. K. R. T. Jones, A topological invariant arising in the stability analysis of traveling waves,, J. Reine Angew. Math., 410 (1990), 167.

[4]

J. Bricmont, A. Kupiainen and J. Taskinen, Stability of Cahn-Hilliard fronts,, Comm. Pure Appl. Math., 52 (1999), 839. doi: 10.1002/(SICI)1097-0312(199907)52:7<839::AID-CPA4>3.0.CO;2-I.

[5]

F. Boyer and C. Lapuerta, Study of a three component Cahn-Hilliard flow model,, Mathematical Modeling and Numerical Analysis, 40 (2006), 653. doi: 10.1051/m2an:2006028.

[6]

J. W. Cahn, On spinodal decomposition,, Acta Metall., 9 (1961), 795. doi: 10.1016/0001-6160(61)90182-1.

[7]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I: Interfacial free energy,, J. Chem. Phys., 28 (1958), 258. doi: 10.1063/1.1744102.

[8]

D. de Fontaine, "A Computer Simulation of the Evolution of Coherent Composition Variations in Solid Solutions,'', Ph. D. thesis, (1967).

[9]

D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions I. Stability criteria,, J. Phys. Chem. Solids, 33 (1972), 297. doi: 10.1016/0022-3697(72)90011-X.

[10]

D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions II. Fluctuations and kinetics,, J. Phys. Chem. Solids, 34 (1973), 1285. doi: 10.1016/S0022-3697(73)80026-5.

[11]

, D. de Fontaine,, Private communication 2009., (2009).

[12]

D. J. Eyre, Systems of Cahn-Hilliard equations,, SIAM J. Appl. Math., 53 (1993), 1686. doi: 10.1137/0153078.

[13]

M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,", Annals of Mathematics Studies, (1983).

[14]

M. Giaquinta and E. Giusti, Differentiability of minima of non-differentiable functionals,, Invent. Math., 72 (1983), 285. doi: 10.1007/BF01389324.

[15]

C. P. Grant, Slow motion in one-dimensional Cahn-Morral systems,, SIAM J. Math. Anal., 26 (1995), 21. doi: 10.1137/S0036141092226053.

[16]

R. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles,, Comm. Pure Appl. Math., 51 (1998), 797. doi: 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1.

[17]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture notes in mathematics, 840 (1981).

[18]

P. Howard, Pointwise estimates and stability for degenerate viscous shock waves,, J. Reine Angew. Math., 545 (2002), 19. doi: 10.1515/crll.2002.034.

[19]

P. Howard, Local tracking and stability for degenerate viscous shock waves,, J. Differential Eqns., 186 (2002), 440.

[20]

P. Howard, Asymptotic behavior near transition fronts for equations of generalized Cahn-Hilliard form,, Commun. Math. Phys., 269 (2007), 765. doi: 10.1007/s00220-006-0102-5.

[21]

P. Howard, Asymptotic behavior near planar transition fronts for the Cahn-Hilliard equation,, Phys. D, 229 (2007), 123. doi: 10.1016/j.physd.2007.03.018.

[22]

P. Howard, Spectral analysis of stationary solutions of the Cahn-Hilliard equation,, Advances in Differential Equations, 14 (2009), 87.

[23]

P. Howard and B. Kwon, Stability for transition front solutions in Cahn-Hilliard Systems,, in preparation., ().

[24]

P. Howard and K. Zumbrun, The Evans function and stability criteria for degenerate viscous shock waves,, Discrete and Continuous Dynamical Systems, 10 (2004), 837. doi: 10.3934/dcds.2004.10.837.

[25]

J. J. Hoyt, Spinodal decomposition in ternary alloys,, Acta Metall., 37 (1989), 2489. doi: 10.1016/0001-6160(89)90047-3.

[26]

J. Kim and K. Kang, A numerical method for the ternary Cahn-Hilliard system with a degenerate mobility,, Applied Numerical Mathematics, 59 (2009), 1029. doi: 10.1016/j.apnum.2008.04.004.

[27]

R. V. Kohn and X. Yan, Coarsening rates for models of multicomponent phase separation,, Interfaces Free Bound., 6 (2004), 135. doi: 10.4171/IFB/94.

[28]

J. E. Morral and J. W. Cahn, Spinodal decomposition in ternary systems,, Acta Metall., 19 (1971), 1037. doi: 10.1016/0001-6160(71)90036-8.

[29]

, I. Prigogine,, Bull. Soc. Chim. Belge., 8-9 (1943), 8.

[30]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics IV: Analysis of Operators,", Academic Press, (1978).

[31]

V. Stefanopoulos, Heteroclinic connections for multiple-well potentials: The anisotropic case,, Proc. Royal Soc. Edinburgh Sect. A, 138 (2008), 1313. doi: 10.1017/S0308210507000145.

[32]

K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves,, Indiana Univ. Math. J., 51 (1998), 741. doi: 10.1512/iumj.2002.51.2410.

show all references

References:
[1]

N. D. Alikakos, S. I. Betelu, and X. Chen, Explicit stationary solutions in multiple well dynamics and non-uniqueness of interfacial energy densities,, European J. of Applied Mathematics, 17 (2006), 525. doi: 10.1017/S095679250600667X.

[2]

N. D. Alikakos and G. Fusco, On the connection problem for potentials with several global minima,, Indiana Univ. Math. J., 57 (2008), 1871. doi: 10.1512/iumj.2008.57.3181.

[3]

J. Alexander, R. Gardner and C. K. R. T. Jones, A topological invariant arising in the stability analysis of traveling waves,, J. Reine Angew. Math., 410 (1990), 167.

[4]

J. Bricmont, A. Kupiainen and J. Taskinen, Stability of Cahn-Hilliard fronts,, Comm. Pure Appl. Math., 52 (1999), 839. doi: 10.1002/(SICI)1097-0312(199907)52:7<839::AID-CPA4>3.0.CO;2-I.

[5]

F. Boyer and C. Lapuerta, Study of a three component Cahn-Hilliard flow model,, Mathematical Modeling and Numerical Analysis, 40 (2006), 653. doi: 10.1051/m2an:2006028.

[6]

J. W. Cahn, On spinodal decomposition,, Acta Metall., 9 (1961), 795. doi: 10.1016/0001-6160(61)90182-1.

[7]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I: Interfacial free energy,, J. Chem. Phys., 28 (1958), 258. doi: 10.1063/1.1744102.

[8]

D. de Fontaine, "A Computer Simulation of the Evolution of Coherent Composition Variations in Solid Solutions,'', Ph. D. thesis, (1967).

[9]

D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions I. Stability criteria,, J. Phys. Chem. Solids, 33 (1972), 297. doi: 10.1016/0022-3697(72)90011-X.

[10]

D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions II. Fluctuations and kinetics,, J. Phys. Chem. Solids, 34 (1973), 1285. doi: 10.1016/S0022-3697(73)80026-5.

[11]

, D. de Fontaine,, Private communication 2009., (2009).

[12]

D. J. Eyre, Systems of Cahn-Hilliard equations,, SIAM J. Appl. Math., 53 (1993), 1686. doi: 10.1137/0153078.

[13]

M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,", Annals of Mathematics Studies, (1983).

[14]

M. Giaquinta and E. Giusti, Differentiability of minima of non-differentiable functionals,, Invent. Math., 72 (1983), 285. doi: 10.1007/BF01389324.

[15]

C. P. Grant, Slow motion in one-dimensional Cahn-Morral systems,, SIAM J. Math. Anal., 26 (1995), 21. doi: 10.1137/S0036141092226053.

[16]

R. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles,, Comm. Pure Appl. Math., 51 (1998), 797. doi: 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1.

[17]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture notes in mathematics, 840 (1981).

[18]

P. Howard, Pointwise estimates and stability for degenerate viscous shock waves,, J. Reine Angew. Math., 545 (2002), 19. doi: 10.1515/crll.2002.034.

[19]

P. Howard, Local tracking and stability for degenerate viscous shock waves,, J. Differential Eqns., 186 (2002), 440.

[20]

P. Howard, Asymptotic behavior near transition fronts for equations of generalized Cahn-Hilliard form,, Commun. Math. Phys., 269 (2007), 765. doi: 10.1007/s00220-006-0102-5.

[21]

P. Howard, Asymptotic behavior near planar transition fronts for the Cahn-Hilliard equation,, Phys. D, 229 (2007), 123. doi: 10.1016/j.physd.2007.03.018.

[22]

P. Howard, Spectral analysis of stationary solutions of the Cahn-Hilliard equation,, Advances in Differential Equations, 14 (2009), 87.

[23]

P. Howard and B. Kwon, Stability for transition front solutions in Cahn-Hilliard Systems,, in preparation., ().

[24]

P. Howard and K. Zumbrun, The Evans function and stability criteria for degenerate viscous shock waves,, Discrete and Continuous Dynamical Systems, 10 (2004), 837. doi: 10.3934/dcds.2004.10.837.

[25]

J. J. Hoyt, Spinodal decomposition in ternary alloys,, Acta Metall., 37 (1989), 2489. doi: 10.1016/0001-6160(89)90047-3.

[26]

J. Kim and K. Kang, A numerical method for the ternary Cahn-Hilliard system with a degenerate mobility,, Applied Numerical Mathematics, 59 (2009), 1029. doi: 10.1016/j.apnum.2008.04.004.

[27]

R. V. Kohn and X. Yan, Coarsening rates for models of multicomponent phase separation,, Interfaces Free Bound., 6 (2004), 135. doi: 10.4171/IFB/94.

[28]

J. E. Morral and J. W. Cahn, Spinodal decomposition in ternary systems,, Acta Metall., 19 (1971), 1037. doi: 10.1016/0001-6160(71)90036-8.

[29]

, I. Prigogine,, Bull. Soc. Chim. Belge., 8-9 (1943), 8.

[30]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics IV: Analysis of Operators,", Academic Press, (1978).

[31]

V. Stefanopoulos, Heteroclinic connections for multiple-well potentials: The anisotropic case,, Proc. Royal Soc. Edinburgh Sect. A, 138 (2008), 1313. doi: 10.1017/S0308210507000145.

[32]

K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves,, Indiana Univ. Math. J., 51 (1998), 741. doi: 10.1512/iumj.2002.51.2410.

[1]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[2]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73

[3]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[4]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

[5]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[6]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[7]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[8]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[9]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations & Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[10]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[11]

Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127

[12]

Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669

[13]

Peter Howard, K. Zumbrun. The Evans function and stability criteria for degenerate viscous shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 837-855. doi: 10.3934/dcds.2004.10.837

[14]

Ramon Plaza, K. Zumbrun. An Evans function approach to spectral stability of small-amplitude shock profiles. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 885-924. doi: 10.3934/dcds.2004.10.885

[15]

Elena Bonetti, Pierluigi Colli, Luca Scarpa, Giuseppe Tomassetti. A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1001-1022. doi: 10.3934/cpaa.2018049

[16]

Dirk Blömker, Bernhard Gawron, Thomas Wanner. Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 25-52. doi: 10.3934/dcds.2010.27.25

[17]

Pierluigi Colli, Gianni Gilardi, Paolo Podio-Guidugli, Jürgen Sprekels. An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 353-368. doi: 10.3934/dcdss.2013.6.353

[18]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[19]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[20]

Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]