• Previous Article
    Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control
  • DCDS Home
  • This Issue
  • Next Article
    Dense area-preserving homeomorphisms have zero Lyapunov exponents
2012, 32(4): 1209-1229. doi: 10.3934/dcds.2012.32.1209

Symbolic approach and induction in the Heisenberg group

1. 

Institut de Mathematiques de Luminy (UMR 6206), Université de la Méditerranee, Campus de Luminy, 13288 MARSEILLE Cedex 9, France

Received  January 2010 Revised  August 2011 Published  October 2011

We associate a homomorphism in the Heisenberg group to each hyperbolic unimodular automorphism of the free group on two generators. We show that the first return-time of some flows in "good" sections, are conjugate to niltranslations, which have the property of being self-induced.
Citation: Jean-Francois Bertazzon. Symbolic approach and induction in the Heisenberg group. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1209-1229. doi: 10.3934/dcds.2012.32.1209
References:
[1]

R. L. Adler, Symbolic dynamics and Markov partitions,, Bull. Amer. Math. Soc. (N.S.), 35 (1998), 1.

[2]

L. Ambrosio and S. Rigot, Optimal mass transportation in the Heisenberg group,, J. Funct. Anal., 208 (2004), 261. doi: 10.1016/S0022-1236(03)00019-3.

[3]

P. Arnoux, J. Bernat and X. Bressaud, "Geometric Models for Substitution,", Experimental Mathematics, (2010).

[4]

P. Arnoux and C. Mauduit, Complexité de suites engendrées par des récurrences unipotentes,, Acta Arithmetica, 76 (1996), 85.

[5]

P. Arnoux and A. Siegel, Dynamique du nombre d'or,, To appear in Actes de l'Université d'été de Bordeaux, (2004).

[6]

L. Auslander, L. Green and F. Hahn, "Flows on Homogeneous Spaces,", With the assistance of L. Markus and W. Massey, 53 (1963).

[7]

N. Chekhova, P. Hubert and A. Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci,, J. Théor. Nombres Bordeaux, 13 (2001), 371. doi: 10.5802/jtnb.328.

[8]

L. Flaminio and G. Forni, Equidistribution of nilflows and applications to theta sums,, Ergodic Theory Dynam. Systems, 26 (2006), 409. doi: 10.1017/S014338570500060X.

[9]

P. Fogg, "Substitutions in Dynamics, Arithmetics and Combinatorics,", Lecture Notes in Mathematics, 1794 (2002).

[10]

H. Furstenberg, Strict ergodicity and transformation of the torus,, Amer. J. Math., 83 (1961), 573. doi: 10.2307/2372899.

[11]

G. Gelbrich, Self-similar periodic tilings on the Heisenberg group,, J. Lie Theory, 4 (1994), 31.

[12]

M. Goze and P. Piu, Classification des métriques invariantes à gauche sur le groupe de Heisenberg,, Rend. Circ. Mat. Palermo (2), 39 (1990), 299. doi: 10.1007/BF02844764.

[13]

L. W. Green, Spectra of nilflows,, Bull. Amer. Math. Soc., 67 (1961), 414. doi: 10.1090/S0002-9904-1961-10650-2.

[14]

, J. R. Lee and A. Naor,, \emph{$L_p$ metrics on the Heisenberg group and the Goemans-Linial conjecture}., ().

[15]

E. Lesigne, Sur une nil-variété, les parties minimales associées à une translation sont uniquement ergodiques,, Ergodic Theory Dynam. Systems, 11 (1991), 379.

[16]

P. Pansu, Plongements quasiisométriques du groupe de Heisenberg dans $L^p$, d'après Cheeger, Kleiner, Lee, Naor,, in, 25 (2008), 2006.

[17]

M. Queffélec, "Substitution Dynamical Systems-Spectral Analysis,", Lecture Notes in Mathematics, 1294 (1987).

show all references

References:
[1]

R. L. Adler, Symbolic dynamics and Markov partitions,, Bull. Amer. Math. Soc. (N.S.), 35 (1998), 1.

[2]

L. Ambrosio and S. Rigot, Optimal mass transportation in the Heisenberg group,, J. Funct. Anal., 208 (2004), 261. doi: 10.1016/S0022-1236(03)00019-3.

[3]

P. Arnoux, J. Bernat and X. Bressaud, "Geometric Models for Substitution,", Experimental Mathematics, (2010).

[4]

P. Arnoux and C. Mauduit, Complexité de suites engendrées par des récurrences unipotentes,, Acta Arithmetica, 76 (1996), 85.

[5]

P. Arnoux and A. Siegel, Dynamique du nombre d'or,, To appear in Actes de l'Université d'été de Bordeaux, (2004).

[6]

L. Auslander, L. Green and F. Hahn, "Flows on Homogeneous Spaces,", With the assistance of L. Markus and W. Massey, 53 (1963).

[7]

N. Chekhova, P. Hubert and A. Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci,, J. Théor. Nombres Bordeaux, 13 (2001), 371. doi: 10.5802/jtnb.328.

[8]

L. Flaminio and G. Forni, Equidistribution of nilflows and applications to theta sums,, Ergodic Theory Dynam. Systems, 26 (2006), 409. doi: 10.1017/S014338570500060X.

[9]

P. Fogg, "Substitutions in Dynamics, Arithmetics and Combinatorics,", Lecture Notes in Mathematics, 1794 (2002).

[10]

H. Furstenberg, Strict ergodicity and transformation of the torus,, Amer. J. Math., 83 (1961), 573. doi: 10.2307/2372899.

[11]

G. Gelbrich, Self-similar periodic tilings on the Heisenberg group,, J. Lie Theory, 4 (1994), 31.

[12]

M. Goze and P. Piu, Classification des métriques invariantes à gauche sur le groupe de Heisenberg,, Rend. Circ. Mat. Palermo (2), 39 (1990), 299. doi: 10.1007/BF02844764.

[13]

L. W. Green, Spectra of nilflows,, Bull. Amer. Math. Soc., 67 (1961), 414. doi: 10.1090/S0002-9904-1961-10650-2.

[14]

, J. R. Lee and A. Naor,, \emph{$L_p$ metrics on the Heisenberg group and the Goemans-Linial conjecture}., ().

[15]

E. Lesigne, Sur une nil-variété, les parties minimales associées à une translation sont uniquement ergodiques,, Ergodic Theory Dynam. Systems, 11 (1991), 379.

[16]

P. Pansu, Plongements quasiisométriques du groupe de Heisenberg dans $L^p$, d'après Cheeger, Kleiner, Lee, Naor,, in, 25 (2008), 2006.

[17]

M. Queffélec, "Substitution Dynamical Systems-Spectral Analysis,", Lecture Notes in Mathematics, 1294 (1987).

[1]

Heping Liu, Yu Liu. Refinable functions on the Heisenberg group. Communications on Pure & Applied Analysis, 2007, 6 (3) : 775-787. doi: 10.3934/cpaa.2007.6.775

[2]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[3]

Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437

[4]

Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841

[5]

Luis F. López, Yannick Sire. Rigidity results for nonlocal phase transitions in the Heisenberg group $\mathbb{H}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2639-2656. doi: 10.3934/dcds.2014.34.2639

[6]

Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779

[7]

L. Brandolini, M. Rigoli and A. G. Setti. On the existence of positive solutions of Yamabe-type equations on the Heisenberg group. Electronic Research Announcements, 1996, 2: 101-107.

[8]

G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131

[9]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[10]

Chiu-Ya Lan, Chi-Kun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 161-188. doi: 10.3934/dcds.2004.11.161

[11]

Hans Koch. A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 881-909. doi: 10.3934/dcds.2004.11.881

[12]

I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191

[13]

Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1819-1833. doi: 10.3934/dcdsb.2018089

[14]

Houda Mokrani. Semi-linear sub-elliptic equations on the Heisenberg group with a singular potential. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1619-1636. doi: 10.3934/cpaa.2009.8.1619

[15]

G. A. Braga, Frederico Furtado, Jussara M. Moreira, Leonardo T. Rolla. Renormalization group analysis of nonlinear diffusion equations with time dependent coefficients: Analytical results. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 699-715. doi: 10.3934/dcdsb.2007.7.699

[16]

Laura Cremaschi, Carlo Mantegazza. Short-time existence of the second order renormalization group flow in dimension three. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5787-5798. doi: 10.3934/dcds.2015.35.5787

[17]

Vincenzo Michael Isaia. Numerical simulation of universal finite time behavior for parabolic IVP via geometric renormalization group. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3459-3481. doi: 10.3934/dcdsb.2017175

[18]

Dong Sun, V. S. Manoranjan, Hong-Ming Yin. Numerical solutions for a coupled parabolic equations arising induction heating processes. Conference Publications, 2007, 2007 (Special) : 956-964. doi: 10.3934/proc.2007.2007.956

[19]

Bogdan Kwiatkowski, Tadeusz Kwater, Anna Koziorowska. Influence of the distribution component of the magnetic induction vector on rupturing capacity of vacuum switches. Conference Publications, 2011, 2011 (Special) : 913-921. doi: 10.3934/proc.2011.2011.913

[20]

Corey Shanbrom. Periodic orbits in the Kepler-Heisenberg problem. Journal of Geometric Mechanics, 2014, 6 (2) : 261-278. doi: 10.3934/jgm.2014.6.261

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]