2011, 31(3): 975-983. doi: 10.3934/dcds.2011.31.975

A Harnack inequality for fractional Laplace equations with lower order terms

1. 

Departamento de Matemática, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso, Chile

2. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received  February 2010 Revised  May 2011 Published  August 2011

We establish a Harnack inequality of fractional Laplace equations without imposing sign condition on the coefficient of zero order term via the Moser's iteration and John-Nirenberg inequality.
Citation: Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975
References:
[1]

R. F. Bass and D. A. Levin, Harnack inequalities for jump processes,, Potential Anal., 17 (2002), 375. doi: 10.1023/A:1016378210944.

[2]

X. Cabre and Y. Sire, Nonlinear equations for fractional laplacians I: Regularity, maximum principles, and hamiltonian estimates,, preprint, ().

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.

[4]

Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes,, Math. Ann., 312 (1998), 465. doi: 10.1007/s002080050232.

[5]

E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations,, Comm. Partial Differential Equations, 7 (1982), 77.

[6]

Q. Han and F.-H. Lin, "Elliptic Partial Differential Equations,", Courant Lecture Notes in Mathematics, 1 (1997).

[7]

Z.-C. Han and Y. Y. Li, The Yamabe problem on manifolds with boundary: Existence and compactness results,, Duke Math. J., 99 (1999), 489. doi: 10.1215/S0012-7094-99-09916-7.

[8]

F. John and L. Nirenberg, On functions of bounded mean oscillation,, Comm. Pure Appl. Math., 14 (1961), 415. doi: 10.1002/cpa.3160140317.

[9]

M. Kassmann, The classical Harnack inequality fails for non-local operators,, preprint., ().

[10]

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals,, Trans. Amer. Math. Soc., 192 (1974), 261. doi: 10.1090/S0002-9947-1974-0340523-6.

[11]

E. Stein, "Singular Integrals and Differentiability Properties of Function,", Princeton Mathematical Series, 30 (1970).

show all references

References:
[1]

R. F. Bass and D. A. Levin, Harnack inequalities for jump processes,, Potential Anal., 17 (2002), 375. doi: 10.1023/A:1016378210944.

[2]

X. Cabre and Y. Sire, Nonlinear equations for fractional laplacians I: Regularity, maximum principles, and hamiltonian estimates,, preprint, ().

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.

[4]

Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes,, Math. Ann., 312 (1998), 465. doi: 10.1007/s002080050232.

[5]

E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations,, Comm. Partial Differential Equations, 7 (1982), 77.

[6]

Q. Han and F.-H. Lin, "Elliptic Partial Differential Equations,", Courant Lecture Notes in Mathematics, 1 (1997).

[7]

Z.-C. Han and Y. Y. Li, The Yamabe problem on manifolds with boundary: Existence and compactness results,, Duke Math. J., 99 (1999), 489. doi: 10.1215/S0012-7094-99-09916-7.

[8]

F. John and L. Nirenberg, On functions of bounded mean oscillation,, Comm. Pure Appl. Math., 14 (1961), 415. doi: 10.1002/cpa.3160140317.

[9]

M. Kassmann, The classical Harnack inequality fails for non-local operators,, preprint., ().

[10]

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals,, Trans. Amer. Math. Soc., 192 (1974), 261. doi: 10.1090/S0002-9947-1974-0340523-6.

[11]

E. Stein, "Singular Integrals and Differentiability Properties of Function,", Princeton Mathematical Series, 30 (1970).

[1]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[2]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[3]

Daniela De Silva, Ovidiu Savin. A note on higher regularity boundary Harnack inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6155-6163. doi: 10.3934/dcds.2015.35.6155

[4]

Plamen Stefanov, Yang Yang. Multiwave tomography with reflectors: Landweber's iteration. Inverse Problems & Imaging, 2017, 11 (2) : 373-401. doi: 10.3934/ipi.2017018

[5]

Florian Wagener. A parametrised version of Moser's modifying terms theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 719-768. doi: 10.3934/dcdss.2010.3.719

[6]

Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031

[7]

S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279

[8]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[9]

Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505

[10]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[11]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[12]

Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657

[13]

Shouwen Fang, Peng Zhu. Differential Harnack estimates for backward heat equations with potentials under geometric flows. Communications on Pure & Applied Analysis, 2015, 14 (3) : 793-809. doi: 10.3934/cpaa.2015.14.793

[14]

Emmanuele DiBenedetto, Ugo Gianazza and Vincenzo Vespri. Intrinsic Harnack estimates for nonnegative local solutions of degenerate parabolic equations. Electronic Research Announcements, 2006, 12: 95-99.

[15]

Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909

[16]

Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455

[17]

Scott Crass. Solving the heptic by iteration in two dimensions: Geometry and dynamics under Klein's group of order 168. Journal of Modern Dynamics, 2007, 1 (2) : 175-203. doi: 10.3934/jmd.2007.1.175

[18]

Patrizia Pucci, Raffaella Servadei. Nonexistence for $p$--Laplace equations with singular weights. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1421-1438. doi: 10.3934/cpaa.2010.9.1421

[19]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[20]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (24)

Other articles
by authors

[Back to Top]