2011, 31(3): 941-973. doi: 10.3934/dcds.2011.31.941

Nonautonomous bifurcation of bounded solutions II: A Shovel-Bifurcation pattern

1. 

Technische Universität München, Zentrum Mathematik, Boltzmannstraße 3, D-85758 Garching

Received  May 2010 Revised  June 2011 Published  August 2011

This paper continues our work on local bifurcations for nonautonomous difference and ordinary differential equations. Here, it is our premise that constant or periodic solutions are replaced by bounded entire solutions as bifurcating objects in order to encounter right-hand sides with an arbitrary time dependence.
    We introduce a bifurcation pattern caused by a dominant spectral interval (of the dichotomy spectrum) crossing the stability boundary. As a result, differing from the classical autonomous (or periodic) situation, the change of stability appears in two steps from uniformly asymptotically stable to asymptotically stable and finally to unstable. During the asymptotically stable regime, a whole family of bounded entire solutions occurs (a so-called "shovel"). Our basic tools are exponential trichotomies and a quantitative version of the surjective implicit function theorem yielding the existence of strongly center manifolds.
Citation: Christian Pötzsche. Nonautonomous bifurcation of bounded solutions II: A Shovel-Bifurcation pattern. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 941-973. doi: 10.3934/dcds.2011.31.941
References:
[1]

R. P. Agarwal, "Difference Equations and Inequalities,", 2nd edition, 228 (2000).

[2]

A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations,, Comput. Math. Appl., 38 (1999), 41. doi: 10.1016/S0898-1221(99)00167-4.

[3]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).

[4]

B. Aulbach and S. Siegmund, The dichotomy spectrum for noninvertible systems of linear difference equations,, J. Difference Equ. Appl., 7 (2001), 895.

[5]

_____, A spectral theory for nonautonomous difference equations,, New Trends in Difference Equations (Temuco, (2002), 45.

[6]

B. Aulbach, A reduction principle for nonautonomous differential equations,, Archiv der Mathematik, 39 (1982), 217. doi: 10.1007/BF01899528.

[7]

B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations, II,, J. Difference Equ. Appl., 2 (1996), 251.

[8]

A. Ben-Artzi and I. Gohberg, Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts,, Integral Equations Oper. Theory, 14 (1991), 613. doi: 10.1007/BF01200554.

[9]

_____, Dichotomies of perturbed time varying systems and the power method,, Indiana Univ. Math. J., 42 (1993), 699. doi: 10.1512/iumj.1993.42.42031.

[10]

A. G. Baskakov, Invertibility and the Fredholm property of difference operators,, Mathematical Notes, 67 (2000), 690.

[11]

W. A. Coppel, "Stability and Asymptotic Behavior of Differential Equations,", D. C. Heath and Co., (1965).

[12]

_____, "Dichotomies in Stability Theory,", Lect. Notes Math., 629 (1978).

[13]

J. L. Dalec'kiĭ and M. G. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space,", Translations of Mathematical Monographs, 43 (1974).

[14]

L. Dieci and E. S. van Vleck, Lyapunov and Sacker-Sell spectral intervals,, J. Dyn. Differ. Equations, 19 (2007), 265.

[15]

S. Elaydi and O. Hajek, Exponential trichotomy of differential systems,, J. Math. Anal. Appl., 129 (1988), 362. doi: 10.1016/0022-247X(88)90255-7.

[16]

S. Elaydi and K. Janglajew, Dichotomy and trichotomy of difference equations,, J. Difference Equ. Appl., 3 (1998), 417.

[17]

D. Henry, Geometric theory of semilinear parabolic equations,, Lect. Notes Math., 840 (1981).

[18]

J. M. Holtzman, Explicit $\epsilon$ and $\delta$ for the implicit function theorem,, SIAM Review, 12 (1970), 284. doi: 10.1137/1012051.

[19]

T. Hüls, Computing Sacker-Sell spectra in discrete time dynamical systems,, SIAM J. Numer. Anal., 48 (2010), 2043. doi: 10.1137/090754509.

[20]

R. A. Johnson, P. E. Kloeden and R. Pavani, Two-step transitions in nonautonomous bifurcations: An explanation,, Stoch. Dyn., 2 (2002), 67. doi: 10.1142/S0219493702000297.

[21]

T. Kato, "Perturbation Theory for Linear Operators,", reprint of the 1980 edition, (1980).

[22]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points,, J. Differ. Equations, 55 (1984), 225. doi: 10.1016/0022-0396(84)90082-2.

[23]

_____, Exponential dichotomies for almost periodic equations,, Proc. Am. Math. Soc., 101 (1987), 293. doi: 10.1090/S0002-9939-1987-0902544-6.

[24]

_____, Exponential dichotomies and Fredholm operators,, Proc. Am. Math. Soc., 104 (1988), 149. doi: 10.1090/S0002-9939-1988-0958058-1.

[25]

G. Papaschinopoulos, Exponential dichotomy for almost periodic linear difference equations,, Ann. Soc. Sci. Bruxelles, 102 (1988), 19.

[26]

_____, On exponential trichotomy of linear difference equations,, Appl. Anal., 40 (1991), 89. doi: 10.1080/00036819108839996.

[27]

C. Pötzsche, Stability of center fiber bundles for nonautonomous difference equations,, in, 42 (2004), 295.

[28]

_____, A note on the dichotomy spectrum,, J. Difference Equ. Appl., 15 (2009), 1021.

[29]

_____, Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach,, Discrete and Continuous Dynamical Systems (Series B), 14 (2010), 739. doi: 10.3934/dcdsb.2010.14.739.

[30]

_____, Nonautonomous continuation of bounded solutions,, Commun. Pure Appl. Anal., 10 (2011), 937.

[31]

C. Pötzsche and M. Rasmussen, Local approximation of invariant fiber bundles: An algorithmic approach,, in, (2005), 155.

[32]

_____, Taylor approximation of invariant fiber bundles for nonautonomous difference equations,, Nonlin. Analysis, 60 (2005), 1303. doi: 10.1016/j.na.2004.10.019.

[33]

_____, Taylor approximation of integral manifolds,, J. Dyn. Differ. Equations, 18 (2006), 427.

[34]

S. Siegmund, Dichotomy spectrum for nonautonomous differential equations,, J. Dyn. Differ. Equations, 14 (2002), 243.

[35]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems,, J. Differ. Equations, 27 (1978), 320. doi: 10.1016/0022-0396(78)90057-8.

[36]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, 143 (2002).

[37]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. I. (Fixed-Point Theorems),", Springer-Verlag, (1986).

show all references

References:
[1]

R. P. Agarwal, "Difference Equations and Inequalities,", 2nd edition, 228 (2000).

[2]

A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations,, Comput. Math. Appl., 38 (1999), 41. doi: 10.1016/S0898-1221(99)00167-4.

[3]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).

[4]

B. Aulbach and S. Siegmund, The dichotomy spectrum for noninvertible systems of linear difference equations,, J. Difference Equ. Appl., 7 (2001), 895.

[5]

_____, A spectral theory for nonautonomous difference equations,, New Trends in Difference Equations (Temuco, (2002), 45.

[6]

B. Aulbach, A reduction principle for nonautonomous differential equations,, Archiv der Mathematik, 39 (1982), 217. doi: 10.1007/BF01899528.

[7]

B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations, II,, J. Difference Equ. Appl., 2 (1996), 251.

[8]

A. Ben-Artzi and I. Gohberg, Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts,, Integral Equations Oper. Theory, 14 (1991), 613. doi: 10.1007/BF01200554.

[9]

_____, Dichotomies of perturbed time varying systems and the power method,, Indiana Univ. Math. J., 42 (1993), 699. doi: 10.1512/iumj.1993.42.42031.

[10]

A. G. Baskakov, Invertibility and the Fredholm property of difference operators,, Mathematical Notes, 67 (2000), 690.

[11]

W. A. Coppel, "Stability and Asymptotic Behavior of Differential Equations,", D. C. Heath and Co., (1965).

[12]

_____, "Dichotomies in Stability Theory,", Lect. Notes Math., 629 (1978).

[13]

J. L. Dalec'kiĭ and M. G. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space,", Translations of Mathematical Monographs, 43 (1974).

[14]

L. Dieci and E. S. van Vleck, Lyapunov and Sacker-Sell spectral intervals,, J. Dyn. Differ. Equations, 19 (2007), 265.

[15]

S. Elaydi and O. Hajek, Exponential trichotomy of differential systems,, J. Math. Anal. Appl., 129 (1988), 362. doi: 10.1016/0022-247X(88)90255-7.

[16]

S. Elaydi and K. Janglajew, Dichotomy and trichotomy of difference equations,, J. Difference Equ. Appl., 3 (1998), 417.

[17]

D. Henry, Geometric theory of semilinear parabolic equations,, Lect. Notes Math., 840 (1981).

[18]

J. M. Holtzman, Explicit $\epsilon$ and $\delta$ for the implicit function theorem,, SIAM Review, 12 (1970), 284. doi: 10.1137/1012051.

[19]

T. Hüls, Computing Sacker-Sell spectra in discrete time dynamical systems,, SIAM J. Numer. Anal., 48 (2010), 2043. doi: 10.1137/090754509.

[20]

R. A. Johnson, P. E. Kloeden and R. Pavani, Two-step transitions in nonautonomous bifurcations: An explanation,, Stoch. Dyn., 2 (2002), 67. doi: 10.1142/S0219493702000297.

[21]

T. Kato, "Perturbation Theory for Linear Operators,", reprint of the 1980 edition, (1980).

[22]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points,, J. Differ. Equations, 55 (1984), 225. doi: 10.1016/0022-0396(84)90082-2.

[23]

_____, Exponential dichotomies for almost periodic equations,, Proc. Am. Math. Soc., 101 (1987), 293. doi: 10.1090/S0002-9939-1987-0902544-6.

[24]

_____, Exponential dichotomies and Fredholm operators,, Proc. Am. Math. Soc., 104 (1988), 149. doi: 10.1090/S0002-9939-1988-0958058-1.

[25]

G. Papaschinopoulos, Exponential dichotomy for almost periodic linear difference equations,, Ann. Soc. Sci. Bruxelles, 102 (1988), 19.

[26]

_____, On exponential trichotomy of linear difference equations,, Appl. Anal., 40 (1991), 89. doi: 10.1080/00036819108839996.

[27]

C. Pötzsche, Stability of center fiber bundles for nonautonomous difference equations,, in, 42 (2004), 295.

[28]

_____, A note on the dichotomy spectrum,, J. Difference Equ. Appl., 15 (2009), 1021.

[29]

_____, Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach,, Discrete and Continuous Dynamical Systems (Series B), 14 (2010), 739. doi: 10.3934/dcdsb.2010.14.739.

[30]

_____, Nonautonomous continuation of bounded solutions,, Commun. Pure Appl. Anal., 10 (2011), 937.

[31]

C. Pötzsche and M. Rasmussen, Local approximation of invariant fiber bundles: An algorithmic approach,, in, (2005), 155.

[32]

_____, Taylor approximation of invariant fiber bundles for nonautonomous difference equations,, Nonlin. Analysis, 60 (2005), 1303. doi: 10.1016/j.na.2004.10.019.

[33]

_____, Taylor approximation of integral manifolds,, J. Dyn. Differ. Equations, 18 (2006), 427.

[34]

S. Siegmund, Dichotomy spectrum for nonautonomous differential equations,, J. Dyn. Differ. Equations, 14 (2002), 243.

[35]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems,, J. Differ. Equations, 27 (1978), 320. doi: 10.1016/0022-0396(78)90057-8.

[36]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, 143 (2002).

[37]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. I. (Fixed-Point Theorems),", Springer-Verlag, (1986).

[1]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[2]

Luis Barreira, Claudia Valls. Reversibility and equivariance in center manifolds of nonautonomous dynamics. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 677-699. doi: 10.3934/dcds.2007.18.677

[3]

Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663

[4]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[5]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739

[6]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[7]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[8]

Pengyu Chen, Xuping Zhang, Yongxiang Li. A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1975-1992. doi: 10.3934/cpaa.2018094

[9]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

[10]

Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875

[11]

Arno Berger. Counting uniformly attracting solutions of nonautonomous differential equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 15-25. doi: 10.3934/dcdss.2008.1.15

[12]

Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375

[13]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

[14]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[15]

A. Rodríguez-Bernal. Perturbation of the exponential type of linear nonautonomous parabolic equations and applications to nonlinear equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 1003-1032. doi: 10.3934/dcds.2009.25.1003

[16]

Pierre Fabrie, Alain Miranville. Exponential attractors for nonautonomous first-order evolution equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 225-240. doi: 10.3934/dcds.1998.4.225

[17]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

[18]

Christian Pötzsche. Nonautonomous continuation of bounded solutions. Communications on Pure & Applied Analysis, 2011, 10 (3) : 937-961. doi: 10.3934/cpaa.2011.10.937

[19]

Simon Brendle, Rainer Nagel. PFDE with nonautonomous past. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 953-966. doi: 10.3934/dcds.2002.8.953

[20]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]