2011, 31(3): 847-875. doi: 10.3934/dcds.2011.31.847

Frequency locking of modulated waves

1. 

Institute of Mathematics, Humboldt University of Berlin, Unter den Linden 6, 10099 Berlin, Germany

2. 

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereschenkivska St., 01601 Kiev, Ukraine, Ukraine, Ukraine

3. 

Institute of Mathematics, Humboldt University of Berlin, Rudower Chaussee 25, 12489, Berlin, Germany

Received  June 2010 Revised  September 2010 Published  August 2011

We consider the behavior of a modulated wave solution to an $\mathbb{S}^1$-equivariant autonomous system of differential equations under an external forcing of modulated wave type. The modulation frequency of the forcing is assumed to be close to the modulation frequency of the modulated wave solution, while the wave frequency of the forcing is supposed to be far from that of the modulated wave solution. We describe the domain in the three-dimensional control parameter space (of frequencies and amplitude of the forcing) where stable locking of the modulation frequencies of the forcing and the modulated wave solution occurs.
    Our system is a simplest case scenario for the behavior of self-pulsating lasers under the influence of external periodically modulated optical signals.
Citation: Lutz Recke, Anatoly Samoilenko, Alexey Teplinsky, Viktor Tkachenko, Serhiy Yanchuk. Frequency locking of modulated waves. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 847-875. doi: 10.3934/dcds.2011.31.847
References:
[1]

U. Bandelow, L. Recke and B. Sandstede, Frequency regions for forced locking of self-pulsating multi-section DFB lasers,, Opt. Commun., 147 (1998), 212. doi: 10.1016/S0030-4018(97)00570-1.

[2]

N. N. Bogoliubov and Y. A. Mitropolsky, "Asymptotic Methods in the Theory of Non-linear Oscillations,", International Monographs on Advanced Mathematics and Physics, (1961).

[3]

C. Chicone, "Ordinary Differential Equations with Applications," 2nd edition,, Texts in Applied Mathematics, 34 (2006).

[4]

D. Chillingworth, Generic multiparameter bifurcation from a manifold,, Dyn. Stab. Syst., 15 (2000), 101.

[5]

B. P. Demidovich, "Lectures on Stability Theory,", Nauka, (1967).

[6]

U. Feiste, D. J. As and A. Erhardt, 18 GHz all-optical frequency locking and clock recovery using a self-pulsating two-section laser,, IEEE Photon. Technol. Lett., 6 (1994), 106. doi: 10.1109/68.265905.

[7]

M. Lichtner, M. Radziunas and L. Recke, Well-posedness, smooth dependence and center manifold reduction for a semilinear hyperbolic system from laser dynamics,, Math. Methods Appl. Sci., 30 (2007), 931. doi: 10.1002/mma.816.

[8]

M. Nizette, T. Erneux, A. Gavrielides and V. Kovanis, Stability and bifurcations of periodically modulated, optically injected laser diodes,, Phys. Rev. E, 63 (2001).

[9]

D. Peterhof and B. Sandstede, All-optical clock recovery using multisection distributed-feedback lasers,, J. Nonlinear Sci., 9 (1999), 575. doi: 10.1007/s003329900079.

[10]

M. Radziunas, Numerical bifurcation analysis of the traveling wave model of multisection semiconductor lasers,, Physica D, 213 (2006), 98. doi: 10.1016/j.physd.2005.11.003.

[11]

L. Recke, Forced frequency locking of rotating waves,, Ukraīn. Math. J, 50 (1998), 94.

[12]

L. Recke and D. Peterhof, Abstract forced symmetry breaking and forced frequency locking of modulated waves,, J. Differential Equations, 144 (1998), 233.

[13]

A. M. Samoilenko, "Elements of the Mathematical Theory of Multi-Frequency Oscillations,", Mathematics and its Applications (Soviet Series), 71 (1991).

[14]

A. M. Samoilenko and L. Recke, Conditions for synchronization of one oscillatory system,, Ukrain. Math. J., 57 (2005), 1089. doi: 10.1007/s11253-005-0250-3.

[15]

B. Sartorius, C. Bornholdt, O. Brox, H. J. Ehrke, D. Hoffmann, R. Ludwig and M. Möhrle, All-optical clock recovery module based on self-pulsating DFB laser,, Electronics Letters, 34 (1998), 1664. doi: 10.1049/el:19981152.

[16]

K. R. Schneider, Entrainment of modulation frequency: A case study,, Int. J. Bifurc. Chaos Appl. Sci. Eng., 15 (2005), 3579. doi: 10.1142/S0218127405014234.

[17]

J. Sieber, Numerical bifurcation analysis for multisection semiconductor lasers,, SIAM J. Appl. Dyn. Syst., 1 (2002), 248. doi: 10.1137/S1111111102401746.

[18]

S. Wieczorek, B. Krauskopf, T. B. Simpson and D. Lenstra, The dynamical complexity of optically injected semiconductor lasers,, Phys. Rep., 416 (2005), 1. doi: 10.1016/j.physrep.2005.06.003.

[19]

Y. F. Yi, Stability of integral manifold and orbital attraction of quasi-periodic motion,, J. Differential Equation, 103 (1993), 278.

[20]

Y. F. Yi, A generalized integral manifold theorem,, J. Differential Equation, 102 (1993), 153.

show all references

References:
[1]

U. Bandelow, L. Recke and B. Sandstede, Frequency regions for forced locking of self-pulsating multi-section DFB lasers,, Opt. Commun., 147 (1998), 212. doi: 10.1016/S0030-4018(97)00570-1.

[2]

N. N. Bogoliubov and Y. A. Mitropolsky, "Asymptotic Methods in the Theory of Non-linear Oscillations,", International Monographs on Advanced Mathematics and Physics, (1961).

[3]

C. Chicone, "Ordinary Differential Equations with Applications," 2nd edition,, Texts in Applied Mathematics, 34 (2006).

[4]

D. Chillingworth, Generic multiparameter bifurcation from a manifold,, Dyn. Stab. Syst., 15 (2000), 101.

[5]

B. P. Demidovich, "Lectures on Stability Theory,", Nauka, (1967).

[6]

U. Feiste, D. J. As and A. Erhardt, 18 GHz all-optical frequency locking and clock recovery using a self-pulsating two-section laser,, IEEE Photon. Technol. Lett., 6 (1994), 106. doi: 10.1109/68.265905.

[7]

M. Lichtner, M. Radziunas and L. Recke, Well-posedness, smooth dependence and center manifold reduction for a semilinear hyperbolic system from laser dynamics,, Math. Methods Appl. Sci., 30 (2007), 931. doi: 10.1002/mma.816.

[8]

M. Nizette, T. Erneux, A. Gavrielides and V. Kovanis, Stability and bifurcations of periodically modulated, optically injected laser diodes,, Phys. Rev. E, 63 (2001).

[9]

D. Peterhof and B. Sandstede, All-optical clock recovery using multisection distributed-feedback lasers,, J. Nonlinear Sci., 9 (1999), 575. doi: 10.1007/s003329900079.

[10]

M. Radziunas, Numerical bifurcation analysis of the traveling wave model of multisection semiconductor lasers,, Physica D, 213 (2006), 98. doi: 10.1016/j.physd.2005.11.003.

[11]

L. Recke, Forced frequency locking of rotating waves,, Ukraīn. Math. J, 50 (1998), 94.

[12]

L. Recke and D. Peterhof, Abstract forced symmetry breaking and forced frequency locking of modulated waves,, J. Differential Equations, 144 (1998), 233.

[13]

A. M. Samoilenko, "Elements of the Mathematical Theory of Multi-Frequency Oscillations,", Mathematics and its Applications (Soviet Series), 71 (1991).

[14]

A. M. Samoilenko and L. Recke, Conditions for synchronization of one oscillatory system,, Ukrain. Math. J., 57 (2005), 1089. doi: 10.1007/s11253-005-0250-3.

[15]

B. Sartorius, C. Bornholdt, O. Brox, H. J. Ehrke, D. Hoffmann, R. Ludwig and M. Möhrle, All-optical clock recovery module based on self-pulsating DFB laser,, Electronics Letters, 34 (1998), 1664. doi: 10.1049/el:19981152.

[16]

K. R. Schneider, Entrainment of modulation frequency: A case study,, Int. J. Bifurc. Chaos Appl. Sci. Eng., 15 (2005), 3579. doi: 10.1142/S0218127405014234.

[17]

J. Sieber, Numerical bifurcation analysis for multisection semiconductor lasers,, SIAM J. Appl. Dyn. Syst., 1 (2002), 248. doi: 10.1137/S1111111102401746.

[18]

S. Wieczorek, B. Krauskopf, T. B. Simpson and D. Lenstra, The dynamical complexity of optically injected semiconductor lasers,, Phys. Rep., 416 (2005), 1. doi: 10.1016/j.physrep.2005.06.003.

[19]

Y. F. Yi, Stability of integral manifold and orbital attraction of quasi-periodic motion,, J. Differential Equation, 103 (1993), 278.

[20]

Y. F. Yi, A generalized integral manifold theorem,, J. Differential Equation, 102 (1993), 153.

[1]

Johannes Giannoulis. Transport and generation of macroscopically modulated waves in diatomic chains. Conference Publications, 2011, 2011 (Special) : 485-494. doi: 10.3934/proc.2011.2011.485

[2]

Albert Fannjiang, Knut Solna. Time reversal of parabolic waves and two-frequency Wigner distribution. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 783-802. doi: 10.3934/dcdsb.2006.6.783

[3]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[4]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[5]

Yaiza Canzani, Boris Hanin. Fixed frequency eigenfunction immersions and supremum norms of random waves. Electronic Research Announcements, 2015, 22: 76-86. doi: 10.3934/era.2015.22.76

[6]

A. Palacios. Identification of modulated rotating waves in pattern-forming systems with O(2) symmetry. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 129-147. doi: 10.3934/dcdsb.2002.2.129

[7]

Nabile Boussïd, Andrew Comech. Spectral stability of bi-frequency solitary waves in Soler and Dirac-Klein-Gordon models. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1331-1347. doi: 10.3934/cpaa.2018065

[8]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[9]

Plamen Stefanov, Wenxiang Cong, Ge Wang. Modulated luminescence tomography. Inverse Problems & Imaging, 2015, 9 (2) : 579-589. doi: 10.3934/ipi.2015.9.579

[10]

Peter Kuchment, Leonid Kunyansky. Synthetic focusing in ultrasound modulated tomography. Inverse Problems & Imaging, 2010, 4 (4) : 665-673. doi: 10.3934/ipi.2010.4.665

[11]

Michael Cranston, Benjamin Gess, Michael Scheutzow. Weak synchronization for isotropic flows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3003-3014. doi: 10.3934/dcdsb.2016084

[12]

Stefan Martignoli, Ruedi Stoop. Phase-locking and Arnold coding in prototypical network topologies. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 145-162. doi: 10.3934/dcdsb.2008.9.145

[13]

Zhangxin Chen, Qiaoyuan Jiang, Yanli Cui. Locking-free nonconforming finite elements for planar linear elasticity. Conference Publications, 2005, 2005 (Special) : 181-189. doi: 10.3934/proc.2005.2005.181

[14]

Ruishu Wang, Lin Mu, Xiu Ye. A locking free Reissner-Mindlin element with weak Galerkin rotations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-11. doi: 10.3934/dcdsb.2018086

[15]

Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks & Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597

[16]

Timothy J. Lewis. Phase-locking in electrically coupled non-leaky integrate-and-fire neurons. Conference Publications, 2003, 2003 (Special) : 554-562. doi: 10.3934/proc.2003.2003.554

[17]

Boling Guo, Zhengde Dai. Attractor for the dissipative Hamiltonian amplitude equation governing modulated wave instabilities. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 783-793. doi: 10.3934/dcds.1998.4.783

[18]

Seung-Yeal Ha, Se Eun Noh, Jinyeong Park. Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks & Heterogeneous Media, 2015, 10 (4) : 787-807. doi: 10.3934/nhm.2015.10.787

[19]

Samuel Bowong, Jean Luc Dimi. Adaptive synchronization of a class of uncertain chaotic systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 235-248. doi: 10.3934/dcdsb.2008.9.235

[20]

Shahad Al-azzawi, Jicheng Liu, Xianming Liu. Convergence rate of synchronization of systems with additive noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 227-245. doi: 10.3934/dcdsb.2017012

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (1)

[Back to Top]