2011, 31(3): 827-846. doi: 10.3934/dcds.2011.31.827

Hamiltonian formalism for models of rotating shallow water in semigeostrophic scaling

1. 

School of Engineering and Science, Jacobs University, 28759 Bremen, Germany, Germany

Received  February 2010 Revised  July 2011 Published  August 2011

This paper presents a first rigorous study of the so-called large-scale semigeostrophic equations which were first introduced by R. Salmon in 1985 and later generalized by the first author. We show that these models are Hamiltonian on the group of $H^s$ diffeomorphisms for $s>2$. Notably, in the Hamiltonian setting an apparent topological restriction on the Coriolis parameter disappears. We then derive the corresponding Hamiltonian formulation in Eulerian variables via Poisson reduction and give a simple argument for the existence of $H^s$ solutions locally in time.
Citation: Marcel Oliver, Sergiy Vasylkevych. Hamiltonian formalism for models of rotating shallow water in semigeostrophic scaling. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 827-846. doi: 10.3934/dcds.2011.31.827
References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics,", 2nd edition, (1978).

[2]

V. I. Arnold, Sur la géométrie differentielle des groupes de Lie de dimenson infinie et ses applications à l'hydrodynamique des fluids parfaits,, (French) [On the differential geometry of infinite dimensional Lie groups and its applications], 16 (1966), 319.

[3]

V. I. Arnold and B. Khesin, "Topological Methods in Hydrodynamics,", Applied Mathematical Sciences, 125 (1998).

[4]

J.-D. Benamou and Y. Brenier, Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère transport problem,, SIAM J. Appl. Math., 58 (1998), 1450. doi: 10.1137/S0036139995294111.

[5]

M. Çalik, M. Oliver and S. Vasylkevych, Global well-posedness for models of rotating shallow water in semigeostrophic scaling,, submitted for publication, (2010).

[6]

P. R. Chernoff and J. E. Marsden, "Properties of Infinite Dimensional Hamiltonian Systems,", Lecture Notes in Mathematics, 425 (1974).

[7]

M. J. P. Cullen and W. Gangbo, A variational approach for the 2-dimensional semi-geostrophic shallow water equations,, Arch. Rational Mech. Anal., 156 (2001), 241. doi: 10.1007/s002050000124.

[8]

D. Ebin, The manifold of Riemannian metrics,, in, (1970), 11.

[9]

D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. Math., 92 (1970), 102. doi: 10.2307/1970699.

[10]

A. Eliassen, The quasi-static equations of motion with pressure as an independent variable,, Geofys. Publ. Norske Vid.-Akad. Oslo, 17 (1949), 1.

[11]

A. Eliassen, On the vertical circulation in frontal zones,, Geofys. Publ., 24 (1962), 147.

[12]

B. J. Hoskins, The geostrophic momentum approximation and the semi-geostrophic equations,, J. Atmos. Sci., 32 (1975), 233. doi: 10.1175/1520-0469(1975)032<0233:TGMAAT>2.0.CO;2.

[13]

J. Isenberg and J. E. Marsden, A slice theorem for the space of solutions of Einstein's equations,, Phys. Rep., 89 (1982), 179. doi: 10.1016/0370-1573(82)90066-7.

[14]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,", 2nd edition, 17 (1999).

[15]

M. Oliver, Classical solutions for a generalized Euler equations in two dimensions,, J. Math. Anal. Appl., 215 (1997), 471. doi: 10.1006/jmaa.1997.5647.

[16]

M. Oliver, Variational asymptotics for rotating shallow water near geostrophy: A transformational approach,, J. Fluid Mech., 551 (2006), 197. doi: 10.1017/S0022112005008256.

[17]

M. Oliver and S. Vasylkevych, Generalized LSG models with variable Coriolis parameter,, submitted for publication, (2011).

[18]

R. Palais, "Foundations of Global Non-Linear Analysis,", W. A. Benjamin, (1968).

[19]

I. Roulston and M. J. Sewell, The Mathematical structure of theories of semigeostrophic type,, Philos. Trans. Roy. Soc. London Ser. A, 355 (1997), 2489. doi: 10.1098/rsta.1997.0144.

[20]

R. Salmon, New equations for nearly geostrophic flow,, J. Fluid Mech., 153 (1985), 461. doi: 10.1017/S0022112085001343.

[21]

R. Salmon, Large-scale semi-geostrophic equations for use in ocean circulation models,, J. Fluid Mech., 318 (1996), 85. doi: 10.1017/S0022112096007045.

[22]

R. Salmon, "Lectures on Geophysical Fluid Dynamics,", Oxford University Press, (1998).

[23]

S. Shkoller, Geometry and curvature of diffeomorphism groups with $H^1$ metric and mean hydrodynamics,, J. Funct. Anal., 160 (1998), 337. doi: 10.1006/jfan.1998.3335.

[24]

R. Temam, On the Euler equations of incompressible perfect fluids,, J. Funct. Anal., 20 (1975), 32. doi: 10.1016/0022-1236(75)90052-X.

[25]

S. Vasylkevych and J. E. Marsden, The Lie-Poisson structure of the Euler equations of an ideal fluid,, Dynam. Part. Differ. Eq., 2 (2005), 281.

show all references

References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics,", 2nd edition, (1978).

[2]

V. I. Arnold, Sur la géométrie differentielle des groupes de Lie de dimenson infinie et ses applications à l'hydrodynamique des fluids parfaits,, (French) [On the differential geometry of infinite dimensional Lie groups and its applications], 16 (1966), 319.

[3]

V. I. Arnold and B. Khesin, "Topological Methods in Hydrodynamics,", Applied Mathematical Sciences, 125 (1998).

[4]

J.-D. Benamou and Y. Brenier, Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère transport problem,, SIAM J. Appl. Math., 58 (1998), 1450. doi: 10.1137/S0036139995294111.

[5]

M. Çalik, M. Oliver and S. Vasylkevych, Global well-posedness for models of rotating shallow water in semigeostrophic scaling,, submitted for publication, (2010).

[6]

P. R. Chernoff and J. E. Marsden, "Properties of Infinite Dimensional Hamiltonian Systems,", Lecture Notes in Mathematics, 425 (1974).

[7]

M. J. P. Cullen and W. Gangbo, A variational approach for the 2-dimensional semi-geostrophic shallow water equations,, Arch. Rational Mech. Anal., 156 (2001), 241. doi: 10.1007/s002050000124.

[8]

D. Ebin, The manifold of Riemannian metrics,, in, (1970), 11.

[9]

D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. Math., 92 (1970), 102. doi: 10.2307/1970699.

[10]

A. Eliassen, The quasi-static equations of motion with pressure as an independent variable,, Geofys. Publ. Norske Vid.-Akad. Oslo, 17 (1949), 1.

[11]

A. Eliassen, On the vertical circulation in frontal zones,, Geofys. Publ., 24 (1962), 147.

[12]

B. J. Hoskins, The geostrophic momentum approximation and the semi-geostrophic equations,, J. Atmos. Sci., 32 (1975), 233. doi: 10.1175/1520-0469(1975)032<0233:TGMAAT>2.0.CO;2.

[13]

J. Isenberg and J. E. Marsden, A slice theorem for the space of solutions of Einstein's equations,, Phys. Rep., 89 (1982), 179. doi: 10.1016/0370-1573(82)90066-7.

[14]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,", 2nd edition, 17 (1999).

[15]

M. Oliver, Classical solutions for a generalized Euler equations in two dimensions,, J. Math. Anal. Appl., 215 (1997), 471. doi: 10.1006/jmaa.1997.5647.

[16]

M. Oliver, Variational asymptotics for rotating shallow water near geostrophy: A transformational approach,, J. Fluid Mech., 551 (2006), 197. doi: 10.1017/S0022112005008256.

[17]

M. Oliver and S. Vasylkevych, Generalized LSG models with variable Coriolis parameter,, submitted for publication, (2011).

[18]

R. Palais, "Foundations of Global Non-Linear Analysis,", W. A. Benjamin, (1968).

[19]

I. Roulston and M. J. Sewell, The Mathematical structure of theories of semigeostrophic type,, Philos. Trans. Roy. Soc. London Ser. A, 355 (1997), 2489. doi: 10.1098/rsta.1997.0144.

[20]

R. Salmon, New equations for nearly geostrophic flow,, J. Fluid Mech., 153 (1985), 461. doi: 10.1017/S0022112085001343.

[21]

R. Salmon, Large-scale semi-geostrophic equations for use in ocean circulation models,, J. Fluid Mech., 318 (1996), 85. doi: 10.1017/S0022112096007045.

[22]

R. Salmon, "Lectures on Geophysical Fluid Dynamics,", Oxford University Press, (1998).

[23]

S. Shkoller, Geometry and curvature of diffeomorphism groups with $H^1$ metric and mean hydrodynamics,, J. Funct. Anal., 160 (1998), 337. doi: 10.1006/jfan.1998.3335.

[24]

R. Temam, On the Euler equations of incompressible perfect fluids,, J. Funct. Anal., 20 (1975), 32. doi: 10.1016/0022-1236(75)90052-X.

[25]

S. Vasylkevych and J. E. Marsden, The Lie-Poisson structure of the Euler equations of an ideal fluid,, Dynam. Part. Differ. Eq., 2 (2005), 281.

[1]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[2]

Julien Chambarel, Christian Kharif, Olivier Kimmoun. Focusing wave group in shallow water in the presence of wind. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 773-782. doi: 10.3934/dcdsb.2010.13.773

[3]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[4]

Denys Dutykh, Dimitrios Mitsotakis. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 799-818. doi: 10.3934/dcdsb.2010.13.799

[5]

Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327

[6]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

[7]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[8]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[9]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[10]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[11]

Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085

[12]

Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks & Heterogeneous Media, 2016, 11 (1) : 145-162. doi: 10.3934/nhm.2016.11.145

[13]

Aimin Huang, Roger Temam. The nonlinear 2D subcritical inviscid shallow water equations with periodicity in one direction. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2005-2038. doi: 10.3934/cpaa.2014.13.2005

[14]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[15]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[16]

Joachim Escher, Boris Kolev. Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. Journal of Geometric Mechanics, 2014, 6 (3) : 335-372. doi: 10.3934/jgm.2014.6.335

[17]

Luigi Ambrosio, Maria Colombo, Guido De Philippis, Alessio Figalli. A global existence result for the semigeostrophic equations in three dimensional convex domains. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1251-1268. doi: 10.3934/dcds.2014.34.1251

[18]

Mahmut Çalik, Marcel Oliver. Weak solutions for generalized large-scale semigeostrophic equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 939-955. doi: 10.3934/cpaa.2013.12.939

[19]

Peng-Fei Yao. On shallow shell equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 697-722. doi: 10.3934/dcdss.2009.2.697

[20]

Luis García-Naranjo. Reduction of almost Poisson brackets and Hamiltonization of the Chaplygin sphere. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 37-60. doi: 10.3934/dcdss.2010.3.37

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]