2011, 31(3): 737-752. doi: 10.3934/dcds.2011.31.737

Homoclinic standing waves in focusing DNLS equations

1. 

Universität des Saarlandes, FR Mathematik, Postfach 15 11 50, D-66041 Saarbrücken, Germany

Received  February 2010 Revised  July 2011 Published  August 2011

We study focusing discrete nonlinear Schrödinger equations and present a novel variational existence proof for homoclinic standing waves (bright solitons). Our approach relies on the constrained maximization of an energy functional and provides the existence of two one-parameter families of waves with unimodal and even profile function for a wide class of nonlinearities. Finally, we illustrate our results by numerical simulations.
Citation: Michael Herrmann. Homoclinic standing waves in focusing DNLS equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 737-752. doi: 10.3934/dcds.2011.31.737
References:
[1]

S. Aubry, Breathers in nonlinear lattices: Existence, linear stability and quantization,, Lattice Dynamics (Paris, 103 (1997), 201. doi: 10.1016/S0167-2789(96)00261-8.

[2]

W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow,, SIAM J. Sci. Comput., 25 (2004), 1674. doi: 10.1137/S1064827503422956.

[3]

J. Dorignac, J. Zhou and D. K. Campbell, Discrete breathers in nonlinear Schrödinger hypercubic lattices with arbitrary power nonlinearity,, Physica D, 237 (2008), 486. doi: 10.1016/j.physd.2007.09.018.

[4]

J. Ch. Eilbeck and M. Johansson, The discrete nonlinear Schrödinger equation - 20 years on,, in Proceedings of the Third Conference on Localization and Energy Transfer in Nonlinear Systems 2002, (2002), 44.

[5]

J. C. Eilbeck, P. S. Lomdahl and A. C. Scott, The discrete self-trapping equation,, Physica D, 16 (1985), 318. doi: 10.1016/0167-2789(85)90012-0.

[6]

S. Flach, K. Kladko and R. S. MacKay, Energy thresholds for discrete breathers in one-, two-, and three-dimensional lattices,, Phys. Rev. Lett., 78 (1987), 1207. doi: 10.1103/PhysRevLett.78.1207.

[7]

M. Herrmann, Heteroclinic standing waves in defocussing DNLS equations: Variational approach via energy minimization,, Appl. Anal., 89 (2010), 1591.

[8]

P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 1, General Introduction and Derivation of the DNLS Equation, 3-9,, Springer, (2009).

[9]

P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 5, The Defocusing Case, 117-141., Springer, (2009).

[10]

P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 2, The One-Dimensional Case, 3-9,, Springer, (2009).

[11]

P. G. Kevrekidis, K. Ø. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results,, Int. J. Mod. Phys. B, 15 (2001), 2833. doi: 10.1142/S0217979201007105.

[12]

A. Khare, K. Ø. Rasmussen, M. R. Samuelsen and A. Saxena, Exact solutions of the saturable discrete nonlinear Schrödinger equation,, J. Phys. A, 38 (2005), 807. doi: 10.1088/0305-4470/38/4/002.

[13]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.

[14]

R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators,, Nonlinearity, 7 (1994), 1623. doi: 10.1088/0951-7715/7/6/006.

[15]

A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations,, Nonlinearity, 19 (2006), 27. doi: 10.1088/0951-7715/19/1/002.

[16]

A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach,, Discret. Contin. Dyn. Syst., 19 (2007), 419. doi: 10.3934/dcds.2007.19.419.

[17]

A. Pankov and V. M. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), 3219. doi: 10.1098/rspa.2008.0255.

[18]

A. Pankov and N. Zakharchenko, On some discrete variational problems,, Acta Appl. Math., 65 (2001), 295. doi: 10.1023/A:1010655000447.

[19]

J. A. Pava, "Nonlinear Dispersive Equations. Existence and Stability of Solitary and Periodic Travelling Wave Solutions," Mathematical Surveys and Monographs, 156,, American Mathematical Society, (2009).

[20]

D. E. Pelinovsky, P. G. Kevrekidis and D. J. Frantzeskakis, Stability of discrete solitons in nonlinear Schrödinger lattices,, Phys. D, 212 (2005), 1. doi: 10.1016/j.physd.2005.07.021.

[21]

D. E. Pelinovsky and V. M. Rothos, Bifurcations of travelling wave solutions in the discrete NLS equations,, Physica D, 202 (2005), 16. doi: 10.1016/j.physd.2005.01.016.

[22]

M. A. Porter, Experimental results related to DNLS equations,, in, 232 (2009), 175.

[23]

W.-X. Qin and X. Xiao, Homoclinic orbits and localized solutions in nonlinear Schrödinger lattices,, Nonlinearity, 20 (2007), 2305. doi: 10.1088/0951-7715/20/10/002.

[24]

H. Shi and H. Zhang, Existence of gap solitons in periodic discrete nonlinear Schrödinger equations,, J. Math. Anal. Appl., 361 (2010), 411. doi: 10.1016/j.jmaa.2009.07.026.

[25]

C. A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation,, Milan J. Math., 76 (2008), 329. doi: 10.1007/s00032-008-0089-9.

[26]

M. I. Weinstein, Excitation thresholds for nonlinear localized modes on lattices,, Nonlinearity, 12 (1999), 673. doi: 10.1088/0951-7715/12/3/314.

[27]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations,, Comm. Pure Appl. Math., 39 (1986), 51. doi: 10.1002/cpa.3160390103.

[28]

J. Yang and T. I. Lakoba, Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations,, Stud. Appl. Math., 118 (2007), 153. doi: 10.1111/j.1467-9590.2007.00371.x.

[29]

G. Zhang and F. Liu, Existence of breather solutions of the DNLS equations with unbounded potentials,, Nonlinear Anal.-Theory Methods Appl., 71 (2009). doi: 10.1016/j.na.2008.11.071.

[30]

G. Zhang and A. Pankov, Standing wave solutions of the discrete non-linear Schrödinger equations with unbounded potentials,, to appear in Applicable Analysis, (2009).

show all references

References:
[1]

S. Aubry, Breathers in nonlinear lattices: Existence, linear stability and quantization,, Lattice Dynamics (Paris, 103 (1997), 201. doi: 10.1016/S0167-2789(96)00261-8.

[2]

W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow,, SIAM J. Sci. Comput., 25 (2004), 1674. doi: 10.1137/S1064827503422956.

[3]

J. Dorignac, J. Zhou and D. K. Campbell, Discrete breathers in nonlinear Schrödinger hypercubic lattices with arbitrary power nonlinearity,, Physica D, 237 (2008), 486. doi: 10.1016/j.physd.2007.09.018.

[4]

J. Ch. Eilbeck and M. Johansson, The discrete nonlinear Schrödinger equation - 20 years on,, in Proceedings of the Third Conference on Localization and Energy Transfer in Nonlinear Systems 2002, (2002), 44.

[5]

J. C. Eilbeck, P. S. Lomdahl and A. C. Scott, The discrete self-trapping equation,, Physica D, 16 (1985), 318. doi: 10.1016/0167-2789(85)90012-0.

[6]

S. Flach, K. Kladko and R. S. MacKay, Energy thresholds for discrete breathers in one-, two-, and three-dimensional lattices,, Phys. Rev. Lett., 78 (1987), 1207. doi: 10.1103/PhysRevLett.78.1207.

[7]

M. Herrmann, Heteroclinic standing waves in defocussing DNLS equations: Variational approach via energy minimization,, Appl. Anal., 89 (2010), 1591.

[8]

P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 1, General Introduction and Derivation of the DNLS Equation, 3-9,, Springer, (2009).

[9]

P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 5, The Defocusing Case, 117-141., Springer, (2009).

[10]

P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 2, The One-Dimensional Case, 3-9,, Springer, (2009).

[11]

P. G. Kevrekidis, K. Ø. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results,, Int. J. Mod. Phys. B, 15 (2001), 2833. doi: 10.1142/S0217979201007105.

[12]

A. Khare, K. Ø. Rasmussen, M. R. Samuelsen and A. Saxena, Exact solutions of the saturable discrete nonlinear Schrödinger equation,, J. Phys. A, 38 (2005), 807. doi: 10.1088/0305-4470/38/4/002.

[13]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.

[14]

R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators,, Nonlinearity, 7 (1994), 1623. doi: 10.1088/0951-7715/7/6/006.

[15]

A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations,, Nonlinearity, 19 (2006), 27. doi: 10.1088/0951-7715/19/1/002.

[16]

A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach,, Discret. Contin. Dyn. Syst., 19 (2007), 419. doi: 10.3934/dcds.2007.19.419.

[17]

A. Pankov and V. M. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), 3219. doi: 10.1098/rspa.2008.0255.

[18]

A. Pankov and N. Zakharchenko, On some discrete variational problems,, Acta Appl. Math., 65 (2001), 295. doi: 10.1023/A:1010655000447.

[19]

J. A. Pava, "Nonlinear Dispersive Equations. Existence and Stability of Solitary and Periodic Travelling Wave Solutions," Mathematical Surveys and Monographs, 156,, American Mathematical Society, (2009).

[20]

D. E. Pelinovsky, P. G. Kevrekidis and D. J. Frantzeskakis, Stability of discrete solitons in nonlinear Schrödinger lattices,, Phys. D, 212 (2005), 1. doi: 10.1016/j.physd.2005.07.021.

[21]

D. E. Pelinovsky and V. M. Rothos, Bifurcations of travelling wave solutions in the discrete NLS equations,, Physica D, 202 (2005), 16. doi: 10.1016/j.physd.2005.01.016.

[22]

M. A. Porter, Experimental results related to DNLS equations,, in, 232 (2009), 175.

[23]

W.-X. Qin and X. Xiao, Homoclinic orbits and localized solutions in nonlinear Schrödinger lattices,, Nonlinearity, 20 (2007), 2305. doi: 10.1088/0951-7715/20/10/002.

[24]

H. Shi and H. Zhang, Existence of gap solitons in periodic discrete nonlinear Schrödinger equations,, J. Math. Anal. Appl., 361 (2010), 411. doi: 10.1016/j.jmaa.2009.07.026.

[25]

C. A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation,, Milan J. Math., 76 (2008), 329. doi: 10.1007/s00032-008-0089-9.

[26]

M. I. Weinstein, Excitation thresholds for nonlinear localized modes on lattices,, Nonlinearity, 12 (1999), 673. doi: 10.1088/0951-7715/12/3/314.

[27]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations,, Comm. Pure Appl. Math., 39 (1986), 51. doi: 10.1002/cpa.3160390103.

[28]

J. Yang and T. I. Lakoba, Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations,, Stud. Appl. Math., 118 (2007), 153. doi: 10.1111/j.1467-9590.2007.00371.x.

[29]

G. Zhang and F. Liu, Existence of breather solutions of the DNLS equations with unbounded potentials,, Nonlinear Anal.-Theory Methods Appl., 71 (2009). doi: 10.1016/j.na.2008.11.071.

[30]

G. Zhang and A. Pankov, Standing wave solutions of the discrete non-linear Schrödinger equations with unbounded potentials,, to appear in Applicable Analysis, (2009).

[1]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[2]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[3]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[4]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[5]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[6]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[7]

Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007

[8]

David Usero. Dark solitary waves in nonlocal nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1327-1340. doi: 10.3934/dcdss.2011.4.1327

[9]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[10]

Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure & Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010

[11]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[12]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[13]

Nan Lu. Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3533-3567. doi: 10.3934/dcds.2015.35.3533

[14]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[15]

Michal Fečkan, Vassilis M. Rothos. Travelling waves of forced discrete nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1129-1145. doi: 10.3934/dcdss.2011.4.1129

[16]

Jaeyoung Byeon, Louis Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 255-269. doi: 10.3934/dcds.2007.19.255

[17]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[18]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

[19]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[20]

Nghiem V. Nguyen, Zhi-Qiang Wang. Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1005-1021. doi: 10.3934/dcds.2016.36.1005

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]