2010, 26(3): 781-794. doi: 10.3934/dcds.2010.26.781

An inviscid dyadic model of turbulence: The global attractor

1. 

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices (M/C 249), 851 S. Morgan Street, Chicago, IL 60607-7045, United States

2. 

Department of Mathematics, University of Southern California, 3620 South Vermont Ave., KAP 108, Los Angeles, CA 90089, United States

3. 

Department of Mathematics, The University of Texas at Austin, 1 University Station, C1200 Austin, Texas 78712

Received  August 2008 Revised  November 2009 Published  December 2009

Properties of an infinite system of nonlinearly coupled ordinary differential equations are discussed. This system models some properties present in the equations of motion for an inviscid fluid such as the skew symmetry and the 3-dimensional scaling of the quadratic nonlinearity. In a companion paper [8] it is proved that every solution for the system with forcing blows up in finite time in the Sobolev $H^{5/6}$ norm. In this present paper, it is proved that after the blow-up time all solutions stay in $H^s$, $s < 5/6$ for almost all time. It is proved that the model system exhibits the phenomenon of anomalous (or turbulent) dissipation which was conjectured for the Euler equations by Onsager. As a consequence of this anomalous dissipation the unique equilibrium of the system is a global attractor.
Citation: Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781
[1]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[2]

Rana D. Parshad, Juan B. Gutierrez. On the global attractor of the Trojan Y Chromosome model. Communications on Pure & Applied Analysis, 2011, 10 (1) : 339-359. doi: 10.3934/cpaa.2011.10.339

[3]

Eleftherios Gkioulekas, Ka Kit Tung. On the double cascades of energy and enstrophy in two dimensional turbulence. Part 1. Theoretical formulation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 79-102. doi: 10.3934/dcdsb.2005.5.79

[4]

Patrick Fischer, Charles-Henri Bruneau, Hamid Kellay. Multiresolution analysis for 2D turbulence. part 2: A physical interpretation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 717-734. doi: 10.3934/dcdsb.2007.7.717

[5]

Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence. Part 2: Inhomogeneous cases. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 227-241. doi: 10.3934/dcds.2010.28.227

[6]

Patrick Fischer. Multiresolution analysis for 2D turbulence. Part 1: Wavelets vs cosine packets, a comparative study. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 659-686. doi: 10.3934/dcdsb.2005.5.659

[7]

Eleftherios Gkioulekas, Ka Kit Tung. On the double cascades of energy and enstrophy in two dimensional turbulence. Part 2. Approach to the KLB limit and interpretation of experimental evidence. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 103-124. doi: 10.3934/dcdsb.2005.5.103

[8]

W. Layton, R. Lewandowski. On a well-posed turbulence model. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 111-128. doi: 10.3934/dcdsb.2006.6.111

[9]

Inger Daniels, Catherine Lebiedzik. Existence and uniqueness of a structural acoustic model involving a nonlinear shell. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 243-252. doi: 10.3934/dcdss.2008.1.243

[10]

Luca Bisconti, Davide Catania. Global well-posedness of the two-dimensional horizontally filtered simplified Bardina turbulence model on a strip-like region. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1861-1881. doi: 10.3934/cpaa.2017090

[11]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[12]

Peter R. Kramer, Joseph A. Biello, Yuri Lvov. Application of weak turbulence theory to FPU model. Conference Publications, 2003, 2003 (Special) : 482-491. doi: 10.3934/proc.2003.2003.482

[13]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure & Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[14]

Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1

[15]

Yuncheng You. Global attractor of the Gray-Scott equations. Communications on Pure & Applied Analysis, 2008, 7 (4) : 947-970. doi: 10.3934/cpaa.2008.7.947

[16]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[17]

T. Gallouët, J.-C. Latché. Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2371-2391. doi: 10.3934/cpaa.2012.11.2371

[18]

Peng-Fei Yao. On shallow shell equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 697-722. doi: 10.3934/dcdss.2009.2.697

[19]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[20]

Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (8)

[Back to Top]