
Previous Article
Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves
 DCDS Home
 This Issue

Next Article
Absorption of characteristics by sonic curve of the twodimensional Euler equations
Time discrete wave equations: Boundary observability and control
1.  Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190 
2.  School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China 
3.  Basque Center for Applied Mathematics (BCAM), Gran Via 35, 48009 Bilbao, Spain 
[1] 
Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete & Continuous Dynamical Systems  A, 2003, 9 (4) : 901924. doi: 10.3934/dcds.2003.9.901 
[2] 
Tianliang Yang, J. M. McDonough. Solution filtering technique for solving Burgers' equation. Conference Publications, 2003, 2003 (Special) : 951959. doi: 10.3934/proc.2003.2003.951 
[3] 
Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete & Continuous Dynamical Systems  A, 1996, 2 (3) : 367386. doi: 10.3934/dcds.1996.2.367 
[4] 
Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations & Control Theory, 2018, 7 (4) : 545570. doi: 10.3934/eect.2018026 
[5] 
Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations & Control Theory, 2015, 4 (3) : 325346. doi: 10.3934/eect.2015.4.325 
[6] 
Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete & Continuous Dynamical Systems  A, 2010, 28 (1) : 243257. doi: 10.3934/dcds.2010.28.243 
[7] 
Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403415. doi: 10.3934/eect.2018020 
[8] 
Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556565. doi: 10.3934/proc.2005.2005.556 
[9] 
Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305320. doi: 10.3934/mcrf.2015.5.305 
[10] 
Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521554. doi: 10.3934/mcrf.2014.4.521 
[11] 
Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829854. doi: 10.3934/mcrf.2018037 
[12] 
Belhassen Dehman, JeanPierre Raymond. Exact controllability for the Lamé system. Mathematical Control & Related Fields, 2015, 5 (4) : 743760. doi: 10.3934/mcrf.2015.5.743 
[13] 
Orazio Muscato, Wolfgang Wagner. A stochastic algorithm without time discretization error for the Wigner equation. Kinetic & Related Models, 2019, 12 (1) : 5977. doi: 10.3934/krm.2019003 
[14] 
Olivier Goubet, Ezzeddine Zahrouni. On a time discretization of a weakly damped forced nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (6) : 14291442. doi: 10.3934/cpaa.2008.7.1429 
[15] 
NingAn Lai, Jinglei Zhao. Potential well and exact boundary controllability for radial semilinear wave equations on Schwarzschild spacetime. Communications on Pure & Applied Analysis, 2014, 13 (3) : 13171325. doi: 10.3934/cpaa.2014.13.1317 
[16] 
Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143150. doi: 10.3934/proc.2009.2009.143 
[17] 
Henri Schurz. Analysis and discretization of semilinear stochastic wave equations with cubic nonlinearity and additive spacetime noise. Discrete & Continuous Dynamical Systems  S, 2008, 1 (2) : 353363. doi: 10.3934/dcdss.2008.1.353 
[18] 
Mohammed Aassila. Exact boundary controllability of a coupled system. Discrete & Continuous Dynamical Systems  A, 2000, 6 (3) : 665672. doi: 10.3934/dcds.2000.6.665 
[19] 
Manuel GonzálezBurgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 311333. doi: 10.3934/cpaa.2009.8.311 
[20] 
Viorel Barbu, Ionuţ Munteanu. Internal stabilization of NavierStokes equation with exact controllability on spaces with finite codimension. Evolution Equations & Control Theory, 2012, 1 (1) : 116. doi: 10.3934/eect.2012.1.1 
2017 Impact Factor: 1.179
Tools
Metrics
Other articles
by authors
[Back to Top]