
Previous Article
$C^1$differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus
 DCDS Home
 This Issue

Next Article
Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure
Topological entropy for nonuniformly continuous maps
1.  Department of Mathematics, Tufts University, Medford, MA 021555597 
2.  Department of Mathematics, Tufts University, Medford, MA 02155, United States 
3.  Department of Mathematics, University of Massachusetts, Lowell, MA 01854, United States 
[1] 
Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems  A, 2013, 33 (9) : 41234155. doi: 10.3934/dcds.2013.33.4123 
[2] 
Vladimír Špitalský. Entropy and exact Devaney chaos on totally regular continua. Discrete & Continuous Dynamical Systems  A, 2013, 33 (7) : 31353152. doi: 10.3934/dcds.2013.33.3135 
[3] 
Ravi Vakil and Aleksey Zinger. A natural smooth compactification of the space of elliptic curves in projective space. Electronic Research Announcements, 2007, 13: 5359. 
[4] 
Prof. Dr.rer.nat Widodo. Topological entropy of shift function on the sequences space induced by expanding piecewise linear transformations. Discrete & Continuous Dynamical Systems  A, 2002, 8 (1) : 191208. doi: 10.3934/dcds.2002.8.191 
[5] 
Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems  A, 2005, 12 (3) : 555565. doi: 10.3934/dcds.2005.12.555 
[6] 
Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems  B, 2015, 20 (10) : 33633374. doi: 10.3934/dcdsb.2015.20.3363 
[7] 
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems  A, 2011, 31 (2) : 545556. doi: 10.3934/dcds.2011.31.545 
[8] 
Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems  B, 2015, 20 (10) : 35473564. doi: 10.3934/dcdsb.2015.20.3547 
[9] 
Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems  A, 2004, 10 (3) : 827833. doi: 10.3934/dcds.2004.10.827 
[10] 
Xufeng Guo, Gang Liao, Wenxiang Sun, Dawei Yang. On the hybrid control of metric entropy for dominated splittings. Discrete & Continuous Dynamical Systems  A, 2018, 38 (10) : 50115019. doi: 10.3934/dcds.2018219 
[11] 
Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of volume preserving Anosov systems. Discrete & Continuous Dynamical Systems  A, 2017, 37 (9) : 47674783. doi: 10.3934/dcds.2017205 
[12] 
Dong Chen. Positive metric entropy in nondegenerate nearly integrable systems. Journal of Modern Dynamics, 2017, 11: 4356. doi: 10.3934/jmd.2017003 
[13] 
Yuming Zhang. On continuity equations in spacetime domains. Discrete & Continuous Dynamical Systems  A, 2018, 38 (10) : 48374873. doi: 10.3934/dcds.2018212 
[14] 
Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147167. doi: 10.3934/jmd.2015.9.147 
[15] 
Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 7591. doi: 10.3934/jmd.2014.8.75 
[16] 
Dante CarrascoOlivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for setvalued maps. Discrete & Continuous Dynamical Systems  B, 2015, 20 (10) : 34613474. doi: 10.3934/dcdsb.2015.20.3461 
[17] 
César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete & Continuous Dynamical Systems  A, 2004, 11 (2&3) : 577580. doi: 10.3934/dcds.2004.11.577 
[18] 
Vítor Araújo. Semicontinuity of entropy, existence of equilibrium states and continuity of physical measures. Discrete & Continuous Dynamical Systems  A, 2007, 17 (2) : 371386. doi: 10.3934/dcds.2007.17.371 
[19] 
Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure. Discrete & Continuous Dynamical Systems  A, 2008, 22 (1&2) : 215234. doi: 10.3934/dcds.2008.22.215 
[20] 
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of PrandtlIshlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems  B, 2017, 22 (10) : 37833795. doi: 10.3934/dcdsb.2017190 
2017 Impact Factor: 1.179
Tools
Metrics
Other articles
by authors
[Back to Top]