2008, 21(2): 403-413. doi: 10.3934/dcds.2008.21.403

Growth of the number of geodesics between points and insecurity for Riemannian manifolds

1. 

Department of Mathematics, Northwestern University, Evanston, IL 60208-2730

2. 

IMPA, Estrada Dona Castorina 110, Rio de Janeiro 22460-320, Brazil

Received  May 2007 Revised  October 2007 Published  March 2008

A Riemannian manifold is said to be uniformly secure if there is a finite number $s$ such that all geodesics connecting an arbitrary pair of points in the manifold can be blocked by $s$ point obstacles. We prove that the number of geodesics with length $\leq T$ between every pair of points in a uniformly secure manifold grows polynomially as $T \to \infty$. By results of Gromov and Mañé, the fundamental group of such a manifold is virtually nilpotent, and the topological entropy of its geodesic flow is zero. Furthermore, if a uniformly secure manifold has no conjugate points, then it is flat. This follows from the virtual nilpotency of its fundamental group either via the theorems of Croke-Schroeder and Burago-Ivanov, or by more recent work of Lebedeva.
    We derive from this that a compact Riemannian manifold with no conjugate points whose geodesic flow has positive topological entropy is totally insecure: the geodesics between any pair of points cannot be blocked by a finite number of point obstacles.
Citation: Keith Burns, Eugene Gutkin. Growth of the number of geodesics between points and insecurity for Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 403-413. doi: 10.3934/dcds.2008.21.403
[1]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[2]

Michael Dellnitz, O. Junge, B Thiere. The numerical detection of connecting orbits. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 125-135. doi: 10.3934/dcdsb.2001.1.125

[3]

Isabelle Déchène. On the security of generalized Jacobian cryptosystems. Advances in Mathematics of Communications, 2007, 1 (4) : 413-426. doi: 10.3934/amc.2007.1.413

[4]

Neal Koblitz, Alfred Menezes. Another look at security definitions. Advances in Mathematics of Communications, 2013, 7 (1) : 1-38. doi: 10.3934/amc.2013.7.1

[5]

Lan Wen. A uniform $C^1$ connecting lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 257-265. doi: 10.3934/dcds.2002.8.257

[6]

Vito Mandorino. Connecting orbits for families of Tonelli Hamiltonians. Journal of Modern Dynamics, 2012, 6 (4) : 499-538. doi: 10.3934/jmd.2012.6.499

[7]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

[8]

Alex Eskin, Maryam Mirzakhani. Counting closed geodesics in moduli space. Journal of Modern Dynamics, 2011, 5 (1) : 71-105. doi: 10.3934/jmd.2011.5.71

[9]

R. Bartolo, Anna Maria Candela, J.L. Flores. Timelike Geodesics in stationary Lorentzian manifolds with unbounded coefficients. Conference Publications, 2005, 2005 (Special) : 70-76. doi: 10.3934/proc.2005.2005.70

[10]

Abbas Bahri. Attaching maps in the standard geodesics problem on $S^2$. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 379-426. doi: 10.3934/dcds.2011.30.379

[11]

Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20.

[12]

S. Maier-Paape, Ulrich Miller. Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1137-1153. doi: 10.3934/dcds.2006.15.1137

[13]

Patrick Guidotti. A family of nonlinear diffusions connecting Perona-Malik to standard diffusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 581-590. doi: 10.3934/dcdss.2012.5.581

[14]

Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143

[15]

Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155

[16]

Vladimir S. Matveev and Petar J. Topalov. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic Research Announcements, 2000, 6: 98-104.

[17]

Alice Le Brigant. Computing distances and geodesics between manifold-valued curves in the SRV framework. Journal of Geometric Mechanics, 2017, 9 (2) : 131-156. doi: 10.3934/jgm.2017005

[18]

Tapio Rajala. Improved geodesics for the reduced curvature-dimension condition in branching metric spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3043-3056. doi: 10.3934/dcds.2013.33.3043

[19]

Jonathan Chaika, Yitwah Cheung, Howard Masur. Winning games for bounded geodesics in moduli spaces of quadratic differentials. Journal of Modern Dynamics, 2013, 7 (3) : 395-427. doi: 10.3934/jmd.2013.7.395

[20]

Flavia Antonacci, Marco Degiovanni. On the Euler equation for minimal geodesics on Riemannian manifoldshaving discontinuous metrics. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 833-842. doi: 10.3934/dcds.2006.15.833

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]