2007, 18(2&3): 295-313. doi: 10.3934/dcds.2007.18.295

The exponential stability of neutral stochastic delay partial differential equations

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

2. 

Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

3. 

Division of Mathematical Sciences, Graduate School of Comparative Culture, Kurume University, Miimachi, Kurume, Fukuoka 839-8502, Japan

Received  December 2005 Revised  May 2006 Published  March 2007

In this paper we analyze the almost sure exponential stability and ultimate boundedness of the solutions to a class of neutral stochastic semilinear partial delay differential equations. These kind of equations arise in problems related to coupled oscillators in a noisy environment, or in viscoeslastic materials under random or stochastic influences.
Citation: Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295
[1]

Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete & Continuous Dynamical Systems - B, 2018, 22 (11) : 1-20. doi: 10.3934/dcdsb.2018117

[2]

Min Zhu, Panpan Ren, Junping Li. Exponential stability of solutions for retarded stochastic differential equations without dissipativity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2923-2938. doi: 10.3934/dcdsb.2017157

[3]

Hernán R. Henríquez, Claudio Cuevas, Juan C. Pozo, Herme Soto. Existence of solutions for a class of abstract neutral differential equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2455-2482. doi: 10.3934/dcds.2017106

[4]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[5]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[6]

Wei Mao, Liangjian Hu, Xuerong Mao. Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-27. doi: 10.3934/dcdsb.2018198

[7]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[8]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[9]

Yong Ren, Xuejuan Jia, Lanying Hu. Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2157-2169. doi: 10.3934/dcdsb.2015.20.2157

[10]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[11]

Mustafa Hasanbulli, Yuri V. Rogovchenko. Classification of nonoscillatory solutions of nonlinear neutral differential equations. Conference Publications, 2009, 2009 (Special) : 340-348. doi: 10.3934/proc.2009.2009.340

[12]

Alexandra Rodkina, Henri Schurz. On positivity and boundedness of solutions of nonlinear stochastic difference equations. Conference Publications, 2009, 2009 (Special) : 640-649. doi: 10.3934/proc.2009.2009.640

[13]

Zhen Wang, Xiong Li, Jinzhi Lei. Second moment boundedness of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2963-2991. doi: 10.3934/dcdsb.2014.19.2963

[14]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[15]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[16]

M.I. Gil’. Existence and stability of periodic solutions of semilinear neutral type systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 809-820. doi: 10.3934/dcds.2001.7.809

[17]

John A. D. Appleby, Alexandra Rodkina, Henri Schurz. Pathwise non-exponential decay rates of solutions of scalar nonlinear stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 667-696. doi: 10.3934/dcdsb.2006.6.667

[18]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[19]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[20]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]