2003, 9(2): 287-308. doi: 10.3934/dcds.2003.9.287

Orbital and weak shadowing properties

1. 

Faculty of Mathematics and Mechanics, St. Petersburg State University, University av., 28, 198504, St. Petersburg, Russian Federation, Russian Federation

2. 

Department of Mathematics, Utsunomiya University, Utsunomiya 321-8505, Japan

Received  August 2001 Revised  June 2002 Published  December 2002

We study weak and orbital shadowing properties of dynamical systems related to the following approach: we look for exact trajectories lying in small neighborhoods of approximate ones (or containing approximate ones in their small neighborhoods) or for exact trajectories such that the Hausdorff distances between their closures and closures of approximate trajectories are small.
These properties are characterized for linear diffeomorphisms. We also study some $C^1$-open sets of diffeomorphisms defined in terms of these properties. It is shown that the $C^1$-interior of the set of diffeomorphisms having the orbital shadowing property coincides with the set of structurally stable diffeomorphisms.
Citation: S. Yu. Pilyugin, A. A. Rodionova, Kazuhiro Sakai. Orbital and weak shadowing properties. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 287-308. doi: 10.3934/dcds.2003.9.287
[1]

Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure & Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861

[2]

Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. Kinematical structural stability. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 529-536. doi: 10.3934/dcdss.2016010

[3]

M'hamed Kesri. Structural stability of optimal control problems. Communications on Pure & Applied Analysis, 2005, 4 (4) : 743-756. doi: 10.3934/cpaa.2005.4.743

[4]

M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems & Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219

[5]

Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, Javier Gómez-Serrano. Structural stability for the splash singularities of the water waves problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 4997-5043. doi: 10.3934/dcds.2014.34.4997

[6]

Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257

[7]

Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763

[8]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[9]

Wancheng Sheng, Tong Zhang. Structural stability of solutions to the Riemann problem for a scalar nonconvex CJ combustion model. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 651-667. doi: 10.3934/dcds.2009.25.651

[10]

Ramon Quintanilla. Structural stability and continuous dependence of solutions of thermoelasticity of type III. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 463-470. doi: 10.3934/dcdsb.2001.1.463

[11]

Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809

[12]

Sergei Yu. Pilyugin. Variational shadowing. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 733-737. doi: 10.3934/dcdsb.2010.14.733

[13]

Enoch H. Apaza, Regis Soares. Axiom a systems without sinks and sources on $n$-manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 393-401. doi: 10.3934/dcds.2008.21.393

[14]

Jean-René Chazottes, Renaud Leplaideur. Fluctuations of the nth return time for Axiom A diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 399-411. doi: 10.3934/dcds.2005.13.399

[15]

Luchezar Stoyanov. Pinching conditions, linearization and regularity of Axiom A flows. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 391-412. doi: 10.3934/dcds.2013.33.391

[16]

Christian Bonatti, Nancy Guelman. Axiom A diffeomorphisms derived from Anosov flows. Journal of Modern Dynamics, 2010, 4 (1) : 1-63. doi: 10.3934/jmd.2010.4.1

[17]

S. Yu. Pilyugin. Inverse shadowing by continuous methods. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 29-38. doi: 10.3934/dcds.2002.8.29

[18]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[19]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[20]

Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (27)

[Back to Top]