1998, 4(3): 581-591. doi: 10.3934/dcds.1998.4.581

The oe-property of diffeomorphisms

1. 

Department of Mathematics, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221, Japan

Received  May 1997 Revised  November 1997 Published  April 1998

In this paper, the $C^1$ interior of the set of all diffeomorphisms satisfying the OE-property is characterized as the set of all diffeomorphisms satisfying Axiom A and the strong transversality condition. Thus the $C^1$ interior of the set of all diffeomorphisms satisfying the OE-property is equal to the $C^1$ interior of the set of all diffeomorphisms satisfying the shadowing property.
Citation: Kazuhiro Sakai. The oe-property of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 581-591. doi: 10.3934/dcds.1998.4.581
[1]

Sergey V. Bolotin. Shadowing chains of collision orbits. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 235-260. doi: 10.3934/dcds.2006.14.235

[2]

Piotr Oprocha, Xinxing Wu. On averaged tracing of periodic average pseudo orbits. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4943-4957. doi: 10.3934/dcds.2017212

[3]

Xiao Wen. Structurally stable homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1693-1707. doi: 10.3934/dcds.2016.36.1693

[4]

Raoul-Martin Memmesheimer, Marc Timme. Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1555-1588. doi: 10.3934/dcds.2010.28.1555

[5]

S. Yu. Pilyugin, Kazuhiro Sakai, O. A. Tarakanov. Transversality properties and $C^1$-open sets of diffeomorphisms with weak shadowing. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 871-882. doi: 10.3934/dcds.2006.16.871

[6]

Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123

[7]

J. C. Artés, Jaume Llibre, J. C. Medrado. Nonexistence of limit cycles for a class of structurally stable quadratic vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 259-270. doi: 10.3934/dcds.2007.17.259

[8]

Keonhee Lee, Kazumine Moriyasu, Kazuhiro Sakai. $C^1$-stable shadowing diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 683-697. doi: 10.3934/dcds.2008.22.683

[9]

Li-Li Wan, Chun-Lei Tang. Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 255-271. doi: 10.3934/dcdsb.2011.15.255

[10]

Jun Wang, Junxiang Xu, Fubao Zhang. Homoclinic orbits for superlinear Hamiltonian systems without Ambrosetti-Rabinowitz growth condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1241-1257. doi: 10.3934/dcds.2010.27.1241

[11]

Flavio Abdenur, Lorenzo J. Díaz. Pseudo-orbit shadowing in the $C^1$ topology. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 223-245. doi: 10.3934/dcds.2007.17.223

[12]

Ana Cristina Mereu, Marco Antonio Teixeira. Reversibility and branching of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1177-1199. doi: 10.3934/dcds.2013.33.1177

[13]

Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505

[14]

Michael Dellnitz, O. Junge, B Thiere. The numerical detection of connecting orbits. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 125-135. doi: 10.3934/dcdsb.2001.1.125

[15]

Katrin Gelfert, Christian Wolf. On the distribution of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 949-966. doi: 10.3934/dcds.2010.26.949

[16]

Jacky Cresson, Christophe Guillet. Periodic orbits and Arnold diffusion. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 451-470. doi: 10.3934/dcds.2003.9.451

[17]

Alain Jacquemard, Weber Flávio Pereira. On periodic orbits of polynomial relay systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 331-347. doi: 10.3934/dcds.2007.17.331

[18]

Clark Robinson. Uniform subharmonic orbits for Sitnikov problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 647-652. doi: 10.3934/dcdss.2008.1.647

[19]

Richard Evan Schwartz. Unbounded orbits for outer billiards I. Journal of Modern Dynamics, 2007, 1 (3) : 371-424. doi: 10.3934/jmd.2007.1.371

[20]

Vito Mandorino. Connecting orbits for families of Tonelli Hamiltonians. Journal of Modern Dynamics, 2012, 6 (4) : 499-538. doi: 10.3934/jmd.2012.6.499

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]