1998, 4(2): 301-320. doi: 10.3934/dcds.1998.4.301

Minimal sets of periods for torus maps

1. 

Department of Mathematics, Peking University, Beijing 100871, China

2. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain

Received  April 1997 Revised  February 1998 Published  February 1998

Let $T^r$ be the $r$-dimensional torus, and let $f:T^r\to T^r$ be a map. If $\Per(f)$ denotes the set of periods of $f$, the minimal set of periods of $f$, denoted by $\MPer(f)$, is defined as $\bigcap_{g\cong f}\Per(g)$ where $g:T^r\to T^r$ is homotopic to $f$. First, we characterize the set $\MPer(f)$ in terms of the Nielsen numbers of the iterates of $f$. Second, we distinguish three types of the set $\MPer(f)$ and show that for each type and any given dimension $r$, the variation of $\MPer(f)$ is uniformly bounded in a suitable sense. Finally, we classify all the sets $\MPer(f)$ for self-maps of the $3$-dimensional torus.
Citation: Boju Jiang, Jaume Llibre. Minimal sets of periods for torus maps. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 301-320. doi: 10.3934/dcds.1998.4.301
[1]

Deissy M. S. Castelblanco. Restrictions on rotation sets for commuting torus homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5257-5266. doi: 10.3934/dcds.2016030

[2]

Andrey Gogolev, Misha Guysinsky. $C^1$-differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1/2) : 183-200. doi: 10.3934/dcds.2008.22.183

[3]

Rémi Carles, Erwan Faou. Energy cascades for NLS on the torus. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2063-2077. doi: 10.3934/dcds.2012.32.2063

[4]

Simon Lloyd. On the Closing Lemma problem for the torus. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 951-962. doi: 10.3934/dcds.2009.25.951

[5]

Peter Seibt. A period formula for torus automorphisms. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1029-1048. doi: 10.3934/dcds.2003.9.1029

[6]

Aaron W. Brown. Smooth stabilizers for measures on the torus. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 43-58. doi: 10.3934/dcds.2015.35.43

[7]

Mostapha Benhenda. Nonstandard smooth realization of translations on the torus. Journal of Modern Dynamics, 2013, 7 (3) : 329-367. doi: 10.3934/jmd.2013.7.329

[8]

M. L. Bertotti, Sergey V. Bolotin. Chaotic trajectories for natural systems on a torus. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1343-1357. doi: 10.3934/dcds.2003.9.1343

[9]

Henk W. Broer, Carles Simó, Renato Vitolo. Chaos and quasi-periodicity in diffeomorphisms of the solid torus. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 871-905. doi: 10.3934/dcdsb.2010.14.871

[10]

Lei Wang, Quan Yuan, Jia Li. Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1233-1250. doi: 10.3934/cpaa.2016.15.1233

[11]

M. Burak Erdoğan, Nikolaos Tzirakis. Long time dynamics for forced and weakly damped KdV on the torus. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2669-2684. doi: 10.3934/cpaa.2013.12.2669

[12]

Michael Brin, Dmitri Burago, Sergey Ivanov. Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus. Journal of Modern Dynamics, 2009, 3 (1) : 1-11. doi: 10.3934/jmd.2009.3.1

[13]

Ser Peow Tan, Yan Loi Wong and Ying Zhang. The SL(2, C) character variety of a one-holed torus. Electronic Research Announcements, 2005, 11: 103-110.

[14]

Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253

[15]

Youngae Lee. Non-topological solutions in a generalized Chern-Simons model on torus. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1315-1330. doi: 10.3934/cpaa.2017064

[16]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[17]

Grzegorz Graff, Michał Misiurewicz, Piotr Nowak-Przygodzki. Periodic points of latitudinal maps of the $m$-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6187-6199. doi: 10.3934/dcds.2016070

[18]

Lluís Alsedà, Sylvie Ruette. On the set of periods of sigma maps of degree 1. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4683-4734. doi: 10.3934/dcds.2015.35.4683

[19]

P. Chiranjeevi, V. Kannan, Sharan Gopal. Periodic points and periods for operators on hilbert space. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4233-4237. doi: 10.3934/dcds.2013.33.4233

[20]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]