January  2020, 19(1): 609-640. doi: 10.3934/cpaa.2020029

On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations

Dipartimento di Matematica, Sapienza Università di Roma, Piero D'Ancona, Piazzale A. Moro 2, 00185 Roma, Italy

Received  November 2018 Revised  February 2019 Published  July 2019

We prove a sharp resolvent estimate in scale invariant norms of Amgon–Hörmander type for a magnetic Schrödinger operator on
$ \mathbb{R}^{n} $
,
$ n\ge3 $
$ \begin{equation*} L = -(\partial+iA)^{2}+V \end{equation*} $
with large potentials
$ A, V $
of almost critical decay and regularity.
The estimate is applied to prove sharp smoothing and Strichartz estimates for the Schrödinger, wave and Klein–Gordon flows associated to
$ L $
.
Citation: P. D'Ancona. On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 609-640. doi: 10.3934/cpaa.2020029
References:
[1]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151–218. Google Scholar

[2]

S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, J. Anal. Math., 30 (1976), 1–38. doi: 10.1007/BF02786703. Google Scholar

[3]

G. Artbazar and K. Yajima, The Lp-continuity of wave operators for one dimensional Schrödinger operators, J. Math. Sci. Univ. Tokyo, 7 (2000), 221-240. Google Scholar

[4]

P. Auscher and J. M. Martell, Weighted norm inequalities for fractional operators, Indiana Univ. Math. J., 57 (2008), 1845-1869. doi: 10.1512/iumj.2008.57.3236. Google Scholar

[5]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, 1976. Google Scholar

[6]

P. Brenner, On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations, J. Differential Equations, 56 (1985), 310-344. doi: 10.1016/0022-0396(85)90083-X. Google Scholar

[7]

N. BurqF. PlanchonJ. G. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665-1680. doi: 10.1512/iumj.2004.53.2541. Google Scholar

[8]

F. Cacciafesta and P. D'Ancona, Weighted Lp estimates for powers of selfadjoint operators, Adv. Math., 229 (2002), 501–530. doi: 10.1016/j.aim.2011.09.007. Google Scholar

[9]

F. CacciafestaP. D'Ancona and R. Lucà, Helmholtz and dispersive equations with variable coefficients on exterior domains, SIAM J. Appl. Math., 48 (2016), 1798-1832. doi: 10.1137/15M103769X. Google Scholar

[10]

S. Cuccagna, On the wave equation with a potential, Comm. Partial Differential Equations, 25 (2000), 1549-1565. doi: 10.1080/03605300008821559. Google Scholar

[11]

P. D'Ancona, Kato smoothing and strichartz estimates for wave equations with magnetic potentials, Comm. Math. Phys., 335 (2015), 1–16. doi: 10.1007/s00220-014-2169-8. Google Scholar

[12]

P. D'Ancona and L. Fanelli, Lp-boundedness of the wave operator for the one dimensional Schrödinger operator, Comm. Math. Phys., 268 (2006), 415-438. doi: 10.1007/s00220-006-0098-x. Google Scholar

[13]

P. D'Ancona and L. Fanelli, Strichartz and smoothing estimates of dispersive equations with magnetic potentials, Comm. Partial Differential Equations, 33 (2008), 1082-1112. doi: 10.1080/03605300701743749. Google Scholar

[14]

P. D'AnconaL. FanelliL. Vega and N. Visciglia, Endpoint Strichartzz estimates for the magnetic Schrödinger equation, J. Funct. Anal., 258 (2010), 3227-3240. doi: 10.1016/j.jfa.2010.02.007. Google Scholar

[15]

P. D'Ancona and M. Okamoto, On the cubic Dirac equation with potential and the Lochak–Majorana condition, J. Math. Anal. Appl., 456 (2017), 1203–1237. doi: 10.1016/j.jmaa.2017.07.055. Google Scholar

[16]

P. D'Ancona and V. Pierfelice, On the wave equation with a large rough potential, J. Funct. Anal., 227 (2005), 30-77. doi: 10.1016/j.jfa.2005.05.013. Google Scholar

[17]

M. B. ErdoğanM. Goldberg and W. Schlag, Strichartzz and smoothing estimates for Schrödinger operators with large magnetic potentials in r3, Journal of the European Mathematical Society, 10 (2008), 507-531. doi: 10.4171/JEMS/120. Google Scholar

[18]

M. B. ErdoğanM. Goldberg and W. Schlag, Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions, Forum Mathematicum, 21 (2009), 687-722. doi: 10.1515/FORUM.2009.035. Google Scholar

[19]

L. Fanelli and L. Vega, Magnetic virial identities, weak dispersion and Strichartz inequalities, Math. Ann., 344 (2009), 249-278. doi: 10.1007/s00208-008-0303-7. Google Scholar

[20]

V. Georgiev, A. Stefanov and M. Tarulli, Strichartz estimates for the Schrödinger equation with small magnetic potential, In Journées "Équations aux Dérivées Partielles", pages Exp. No. IV, 17. École Polytech., Palaiseau, 2005. Google Scholar

[21]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. (9), 64 (1985), 363–401. Google Scholar

[22]

J. Ginibre and G. Velo, Generalized Strichartzz inequalities for the wave equation, In Partial Differential Operators and Mathematical Physics (Holzhau, 1994), volume 78 of Oper. Theory Adv. Appl., pages 153–160. Birkhäuser, Basel, 1995. Google Scholar

[23]

L. Grafakos, Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics, Springer, New York, second edition, 2008. Google Scholar

[24]

A. Ionescu and C. Kenig, Well-posedness and local smoothing of solutions of Schrödinger equations, Mathematical Research Letters, 12 (2005), 193-205. doi: 10.4310/MRL.2005.v12.n2.a5. Google Scholar

[25]

R. Johnson and C. J. Neugebauer, Change of variable results for Ap- and reverse Hölder RHr-classes, Trans. Amer. Math. Soc., 328 (1991), 639-666. doi: 10.2307/2001798. Google Scholar

[26]

L. JournéA. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604. doi: 10.1002/cpa.3160440504. Google Scholar

[27]

T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1965/1966), 258-279. doi: 10.1007/BF01360915. Google Scholar

[28]

T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys., 1 (1989), 481-496. doi: 10.1142/S0129055X89000171. Google Scholar

[29]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. Google Scholar

[30]

C. E. KenigG. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 255-288. doi: 10.1016/S0294-1449(16)30213-X. Google Scholar

[31]

H. Koch and D. Tataru, Carleman estimates and absence of embedded eigenvalues, Comm. Math. Phys., 267 (2006), 419-449. doi: 10.1007/s00220-006-0060-y. Google Scholar

[32]

S. MachiharaK. Nakanishi and T. Ozawa, Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation, Rev. Mat. Iberoamericana, 19 (2003), 179-194. doi: 10.4171/RMI/342. Google Scholar

[33]

J. MarzuolaJ. Metcalfe and D. Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Anal., 255 (2008), 1497-1553. doi: 10.1016/j.jfa.2008.05.022. Google Scholar

[34]

H. Mizutani, Global-in-time smoothing effects for Schödinger equations with inverse–square potentials, arXiv: 1610.01745, 2016. doi: 10.1090/proc/13729. Google Scholar

[35]

K. Mochizuki, Uniform resolvent estimates for magnetic Schrödinger operators and smoothing effects for related evolution equations, Publ. Res. Inst. Math. Sci., 46 (2010), 741-754. doi: 10.2977/PRIMS/24. Google Scholar

[36]

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261-274. doi: 10.2307/1996833. Google Scholar

[37]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978. Google Scholar

[38]

I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), 451-513. doi: 10.1007/s00222-003-0325-4. Google Scholar

[39]

A. Stefanov, Strichartz estimates for the magnetic Schrödinger equation, Adv. Math., 210 (2007), 246-303. doi: 10.1016/j.aim.2006.06.006. Google Scholar

[40]

E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, volume 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993. Google Scholar

[41]

D. Tataru, Parametrices and dispersive estimates for Schrödinger operators with variable coefficients, Amer. J. Math., 130 (2008), 571-634. doi: 10.1353/ajm.0.0000. Google Scholar

[42]

K. Yajima, The Wk, p-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan, 47 (1995), 551-581. doi: 10.2969/jmsj/04730551. Google Scholar

[43]

K. Yajima, The Wk, p-continuity of wave operators for schrödinger operators. ⅲ. even-dimensional cases m ≥ 4, J. Math. Sci. Univ. Tokyo, 2 (1995), 311-346. Google Scholar

show all references

References:
[1]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151–218. Google Scholar

[2]

S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, J. Anal. Math., 30 (1976), 1–38. doi: 10.1007/BF02786703. Google Scholar

[3]

G. Artbazar and K. Yajima, The Lp-continuity of wave operators for one dimensional Schrödinger operators, J. Math. Sci. Univ. Tokyo, 7 (2000), 221-240. Google Scholar

[4]

P. Auscher and J. M. Martell, Weighted norm inequalities for fractional operators, Indiana Univ. Math. J., 57 (2008), 1845-1869. doi: 10.1512/iumj.2008.57.3236. Google Scholar

[5]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, 1976. Google Scholar

[6]

P. Brenner, On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations, J. Differential Equations, 56 (1985), 310-344. doi: 10.1016/0022-0396(85)90083-X. Google Scholar

[7]

N. BurqF. PlanchonJ. G. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665-1680. doi: 10.1512/iumj.2004.53.2541. Google Scholar

[8]

F. Cacciafesta and P. D'Ancona, Weighted Lp estimates for powers of selfadjoint operators, Adv. Math., 229 (2002), 501–530. doi: 10.1016/j.aim.2011.09.007. Google Scholar

[9]

F. CacciafestaP. D'Ancona and R. Lucà, Helmholtz and dispersive equations with variable coefficients on exterior domains, SIAM J. Appl. Math., 48 (2016), 1798-1832. doi: 10.1137/15M103769X. Google Scholar

[10]

S. Cuccagna, On the wave equation with a potential, Comm. Partial Differential Equations, 25 (2000), 1549-1565. doi: 10.1080/03605300008821559. Google Scholar

[11]

P. D'Ancona, Kato smoothing and strichartz estimates for wave equations with magnetic potentials, Comm. Math. Phys., 335 (2015), 1–16. doi: 10.1007/s00220-014-2169-8. Google Scholar

[12]

P. D'Ancona and L. Fanelli, Lp-boundedness of the wave operator for the one dimensional Schrödinger operator, Comm. Math. Phys., 268 (2006), 415-438. doi: 10.1007/s00220-006-0098-x. Google Scholar

[13]

P. D'Ancona and L. Fanelli, Strichartz and smoothing estimates of dispersive equations with magnetic potentials, Comm. Partial Differential Equations, 33 (2008), 1082-1112. doi: 10.1080/03605300701743749. Google Scholar

[14]

P. D'AnconaL. FanelliL. Vega and N. Visciglia, Endpoint Strichartzz estimates for the magnetic Schrödinger equation, J. Funct. Anal., 258 (2010), 3227-3240. doi: 10.1016/j.jfa.2010.02.007. Google Scholar

[15]

P. D'Ancona and M. Okamoto, On the cubic Dirac equation with potential and the Lochak–Majorana condition, J. Math. Anal. Appl., 456 (2017), 1203–1237. doi: 10.1016/j.jmaa.2017.07.055. Google Scholar

[16]

P. D'Ancona and V. Pierfelice, On the wave equation with a large rough potential, J. Funct. Anal., 227 (2005), 30-77. doi: 10.1016/j.jfa.2005.05.013. Google Scholar

[17]

M. B. ErdoğanM. Goldberg and W. Schlag, Strichartzz and smoothing estimates for Schrödinger operators with large magnetic potentials in r3, Journal of the European Mathematical Society, 10 (2008), 507-531. doi: 10.4171/JEMS/120. Google Scholar

[18]

M. B. ErdoğanM. Goldberg and W. Schlag, Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions, Forum Mathematicum, 21 (2009), 687-722. doi: 10.1515/FORUM.2009.035. Google Scholar

[19]

L. Fanelli and L. Vega, Magnetic virial identities, weak dispersion and Strichartz inequalities, Math. Ann., 344 (2009), 249-278. doi: 10.1007/s00208-008-0303-7. Google Scholar

[20]

V. Georgiev, A. Stefanov and M. Tarulli, Strichartz estimates for the Schrödinger equation with small magnetic potential, In Journées "Équations aux Dérivées Partielles", pages Exp. No. IV, 17. École Polytech., Palaiseau, 2005. Google Scholar

[21]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. (9), 64 (1985), 363–401. Google Scholar

[22]

J. Ginibre and G. Velo, Generalized Strichartzz inequalities for the wave equation, In Partial Differential Operators and Mathematical Physics (Holzhau, 1994), volume 78 of Oper. Theory Adv. Appl., pages 153–160. Birkhäuser, Basel, 1995. Google Scholar

[23]

L. Grafakos, Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics, Springer, New York, second edition, 2008. Google Scholar

[24]

A. Ionescu and C. Kenig, Well-posedness and local smoothing of solutions of Schrödinger equations, Mathematical Research Letters, 12 (2005), 193-205. doi: 10.4310/MRL.2005.v12.n2.a5. Google Scholar

[25]

R. Johnson and C. J. Neugebauer, Change of variable results for Ap- and reverse Hölder RHr-classes, Trans. Amer. Math. Soc., 328 (1991), 639-666. doi: 10.2307/2001798. Google Scholar

[26]

L. JournéA. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604. doi: 10.1002/cpa.3160440504. Google Scholar

[27]

T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1965/1966), 258-279. doi: 10.1007/BF01360915. Google Scholar

[28]

T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys., 1 (1989), 481-496. doi: 10.1142/S0129055X89000171. Google Scholar

[29]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. Google Scholar

[30]

C. E. KenigG. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 255-288. doi: 10.1016/S0294-1449(16)30213-X. Google Scholar

[31]

H. Koch and D. Tataru, Carleman estimates and absence of embedded eigenvalues, Comm. Math. Phys., 267 (2006), 419-449. doi: 10.1007/s00220-006-0060-y. Google Scholar

[32]

S. MachiharaK. Nakanishi and T. Ozawa, Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation, Rev. Mat. Iberoamericana, 19 (2003), 179-194. doi: 10.4171/RMI/342. Google Scholar

[33]

J. MarzuolaJ. Metcalfe and D. Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Anal., 255 (2008), 1497-1553. doi: 10.1016/j.jfa.2008.05.022. Google Scholar

[34]

H. Mizutani, Global-in-time smoothing effects for Schödinger equations with inverse–square potentials, arXiv: 1610.01745, 2016. doi: 10.1090/proc/13729. Google Scholar

[35]

K. Mochizuki, Uniform resolvent estimates for magnetic Schrödinger operators and smoothing effects for related evolution equations, Publ. Res. Inst. Math. Sci., 46 (2010), 741-754. doi: 10.2977/PRIMS/24. Google Scholar

[36]

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261-274. doi: 10.2307/1996833. Google Scholar

[37]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978. Google Scholar

[38]

I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), 451-513. doi: 10.1007/s00222-003-0325-4. Google Scholar

[39]

A. Stefanov, Strichartz estimates for the magnetic Schrödinger equation, Adv. Math., 210 (2007), 246-303. doi: 10.1016/j.aim.2006.06.006. Google Scholar

[40]

E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, volume 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993. Google Scholar

[41]

D. Tataru, Parametrices and dispersive estimates for Schrödinger operators with variable coefficients, Amer. J. Math., 130 (2008), 571-634. doi: 10.1353/ajm.0.0000. Google Scholar

[42]

K. Yajima, The Wk, p-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan, 47 (1995), 551-581. doi: 10.2969/jmsj/04730551. Google Scholar

[43]

K. Yajima, The Wk, p-continuity of wave operators for schrödinger operators. ⅲ. even-dimensional cases m ≥ 4, J. Math. Sci. Univ. Tokyo, 2 (1995), 311-346. Google Scholar

[1]

Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905

[2]

Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210

[3]

Haruya Mizutani. Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2177-2210. doi: 10.3934/cpaa.2014.13.2177

[4]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[5]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[6]

M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473

[7]

Mouhamed Moustapha Fall. Regularity estimates for nonlocal Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1405-1456. doi: 10.3934/dcds.2019061

[8]

Jin-Cheng Jiang, Chengbo Wang, Xin Yu. Generalized and weighted Strichartz estimates. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1723-1752. doi: 10.3934/cpaa.2012.11.1723

[9]

Robert Schippa. Generalized inhomogeneous Strichartz estimates. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3387-3410. doi: 10.3934/dcds.2017143

[10]

Younghun Hong, Changhun Yang. Uniform Strichartz estimates on the lattice. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3239-3264. doi: 10.3934/dcds.2019134

[11]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

[12]

Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure & Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034

[13]

Thomas Duyckaerts, Carlos E. Kenig, Frank Merle. Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1275-1326. doi: 10.3934/cpaa.2015.14.1275

[14]

Vladimir Georgiev, Atanas Stefanov, Mirko Tarulli. Smoothing-Strichartz estimates for the Schrodinger equation with small magnetic potential. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 771-786. doi: 10.3934/dcds.2007.17.771

[15]

Eugenio Montefusco, Benedetta Pellacci, Marco Squassina. Energy convexity estimates for non-degenerate ground states of nonlinear 1D Schrödinger systems. Communications on Pure & Applied Analysis, 2010, 9 (4) : 867-884. doi: 10.3934/cpaa.2010.9.867

[16]

Gong Chen. Strichartz estimates for charge transfer models. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1201-1226. doi: 10.3934/dcds.2017050

[17]

Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100

[18]

Yonggeun Cho, Tohru Ozawa, Suxia Xia. Remarks on some dispersive estimates. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1121-1128. doi: 10.3934/cpaa.2011.10.1121

[19]

Fabio Nicola. Remarks on dispersive estimates and curvature. Communications on Pure & Applied Analysis, 2007, 6 (1) : 203-212. doi: 10.3934/cpaa.2007.6.203

[20]

Roberto Guglielmi. Indirect stabilization of hyperbolic systems through resolvent estimates. Evolution Equations & Control Theory, 2017, 6 (1) : 59-75. doi: 10.3934/eect.2017004

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (33)
  • HTML views (68)
  • Cited by (0)

Other articles
by authors

[Back to Top]