• Previous Article
    Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator
  • CPAA Home
  • This Issue
  • Next Article
    Almost-periodic perturbations of non-hyperbolic equilibrium points via Pöschel-Rüssmann KAM method
January  2020, 19(1): 527-539. doi: 10.3934/cpaa.2020026

Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian

Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Received  February 2019 Revised  April 2019 Published  July 2019

Fund Project: This work was done while the author was visiting the Vietnam Institute for Advanced Study in Mathematics (VIASM) in 2019. He wish to thank the institute for their hospitality and support

Let
$ u \in L_{sp} \cap C^{1, 1}_{\rm loc}(\mathbb{R}^n\setminus\{0\}) $
be a positive solution, which may blow up at zero, of the equation
$ (-\Delta)^s_p u = \left(\frac{1}{|x|^{n-\beta }} * \frac{u^q}{|x|^\alpha}\right) \frac{u^{q-1 }}{|x|^\alpha} \quad\text{ in } \mathbb{R}^n \setminus \{0\}, $
where
$ 0 < s < 1 $
,
$ 0 < \beta < n $
,
$ p>2 $
,
$ q\ge 1 $
and
$ \alpha>0 $
. We prove that if
$ u $
satisfies some suitable asymptotic properties, then
$ u $
must be radially symmetric and monotone decreasing about the origin. In stead of using equivalent fractional systems, we exploit a direct method of moving planes for the weighted Choquard nonlinearity. This method allows us to cover the full range
$ 0 < \beta < n $
in our results.
Citation: Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026
References:
[1]

G. Siciliano and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci., 25 (2015), 1447-1476. doi: 10.1142/S0218202515500384. Google Scholar

[2]

P. BelchiorH. BuenoO. H. Miyagaki and G. A. Pereira, Remarks about a fractional Choquard equation: Ground state, regularity and polynomial decay, Nonlinear Anal., 164 (2017), 38-53. doi: 10.1016/j.na.2017.08.005. Google Scholar

[3]

C. BjorlandL. Caffarelli and A. Figalli, Non-local gradient dependent operators, Adv. Math., 230 (2012), 1859-1894. doi: 10.1016/j.aim.2012.03.032. Google Scholar

[4]

C. BjorlandL. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Comm. Pure Appl. Math., 65 (2012), 337-380. doi: 10.1002/cpa.21379. Google Scholar

[5]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. Google Scholar

[6]

W. Chen and C. Li, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758. doi: 10.1016/j.aim.2018.07.016. Google Scholar

[7]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437. doi: 10.1016/j.aim.2016.11.038. Google Scholar

[8]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116. Google Scholar

[9]

W. DaiY. Fang and G. Qin, Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes, J. Differential Equations, 265 (2018), 2044-2063. doi: 10.1016/j.jde.2018.04.026. Google Scholar

[10]

J. Dou and H. Zhou, Liouville theorem for fractional Hénon equation and system on $\mathbb{R}^n$, Comm. Pure Appl. Anal., 14 (2015), 1915-1927. doi: 10.3934/cpaa.2015.14.1915. Google Scholar

[11]

L. Du, F. Gao and M. Yang, Existence and qualitative analysis for nonlinear weighted Choquard equations, preprint, arXiv: 1810.11759.Google Scholar

[12]

A. T. Duong and P. Le, Symmetry and nonexistence results for a fractional Hénon-Hardy system on a half-space, Rocky Mountain J. Math., (2019), to appear. Available from: https://projecteuclid.org/euclid.rmjm/1552186836.Google Scholar

[13]

E. P. Gross, Physics of Many-Particle Systems, Vol.1, Gordon Breach, New York, 1966. Google Scholar

[14]

P. Le, Liouville theorem and classification of positive solutions for a fractional Choquard type equation, Nonlinear Anal., 185 (2019), 123-141. doi: 10.1016/j.na.2019.03.006. Google Scholar

[15]

E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977), 185-194. doi: 10.1007/BF01609845. Google Scholar

[16]

B. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems, Nonlinear Anal., 146 (2016), 120-135. doi: 10.1016/j.na.2016.08.022. Google Scholar

[17]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Anal., 71 (2009), 1796-1806. doi: 10.1016/j.na.2009.01.014. Google Scholar

[18]

P. Ma and J. Zhang, Symmetry and Nonexistence of Positive Solutions for Fractional Choquard Equations, preprint, arXiv: 1704.02190.Google Scholar

[19]

P. Ma and J. Zhang, Existence and multiplicity of solutions for fractional Choquard equations, Nonlinear Anal., 164 (2017), 100-117. doi: 10.1016/j.na.2017.07.011. Google Scholar

[20]

L. Ma and Z. Zhang, Symmetry of positive solutions for Choquard equations with fractional p-Laplacian, Nonlinear Anal., 182 (2019), 248-262. doi: 10.1016/j.na.2018.12.015. Google Scholar

[21]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467. doi: 10.1007/s00205-008-0208-3. Google Scholar

[22]

V. Moroz and J. V. Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813. doi: 10.1007/s11784-016-0373-1. Google Scholar

[23]

S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie-Verlag, Berlin, 1954.Google Scholar

[24]

L. Wu and P. Niu, Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations, Discrete Contin. Dyn. Syst., 39 (2018), 1573-1583. doi: 10.3934/dcds.2019069. Google Scholar

[25]

D. Xu and Y. Lei, Classification of positive solutions for a static Schrodinger-Maxwell equation with fractional Laplacian, Applied Math. Letters, 43 (2015), 85-89. doi: 10.1016/j.aml.2014.12.007. Google Scholar

[26]

W. Zhang and X. Wu, Nodal solutions for a fractional Choquard equation, J. Math. Anal. Appl., 464 (2018), 1167-1183. doi: 10.1016/j.jmaa.2018.04.048. Google Scholar

show all references

References:
[1]

G. Siciliano and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci., 25 (2015), 1447-1476. doi: 10.1142/S0218202515500384. Google Scholar

[2]

P. BelchiorH. BuenoO. H. Miyagaki and G. A. Pereira, Remarks about a fractional Choquard equation: Ground state, regularity and polynomial decay, Nonlinear Anal., 164 (2017), 38-53. doi: 10.1016/j.na.2017.08.005. Google Scholar

[3]

C. BjorlandL. Caffarelli and A. Figalli, Non-local gradient dependent operators, Adv. Math., 230 (2012), 1859-1894. doi: 10.1016/j.aim.2012.03.032. Google Scholar

[4]

C. BjorlandL. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Comm. Pure Appl. Math., 65 (2012), 337-380. doi: 10.1002/cpa.21379. Google Scholar

[5]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. Google Scholar

[6]

W. Chen and C. Li, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758. doi: 10.1016/j.aim.2018.07.016. Google Scholar

[7]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437. doi: 10.1016/j.aim.2016.11.038. Google Scholar

[8]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116. Google Scholar

[9]

W. DaiY. Fang and G. Qin, Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes, J. Differential Equations, 265 (2018), 2044-2063. doi: 10.1016/j.jde.2018.04.026. Google Scholar

[10]

J. Dou and H. Zhou, Liouville theorem for fractional Hénon equation and system on $\mathbb{R}^n$, Comm. Pure Appl. Anal., 14 (2015), 1915-1927. doi: 10.3934/cpaa.2015.14.1915. Google Scholar

[11]

L. Du, F. Gao and M. Yang, Existence and qualitative analysis for nonlinear weighted Choquard equations, preprint, arXiv: 1810.11759.Google Scholar

[12]

A. T. Duong and P. Le, Symmetry and nonexistence results for a fractional Hénon-Hardy system on a half-space, Rocky Mountain J. Math., (2019), to appear. Available from: https://projecteuclid.org/euclid.rmjm/1552186836.Google Scholar

[13]

E. P. Gross, Physics of Many-Particle Systems, Vol.1, Gordon Breach, New York, 1966. Google Scholar

[14]

P. Le, Liouville theorem and classification of positive solutions for a fractional Choquard type equation, Nonlinear Anal., 185 (2019), 123-141. doi: 10.1016/j.na.2019.03.006. Google Scholar

[15]

E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977), 185-194. doi: 10.1007/BF01609845. Google Scholar

[16]

B. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems, Nonlinear Anal., 146 (2016), 120-135. doi: 10.1016/j.na.2016.08.022. Google Scholar

[17]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Anal., 71 (2009), 1796-1806. doi: 10.1016/j.na.2009.01.014. Google Scholar

[18]

P. Ma and J. Zhang, Symmetry and Nonexistence of Positive Solutions for Fractional Choquard Equations, preprint, arXiv: 1704.02190.Google Scholar

[19]

P. Ma and J. Zhang, Existence and multiplicity of solutions for fractional Choquard equations, Nonlinear Anal., 164 (2017), 100-117. doi: 10.1016/j.na.2017.07.011. Google Scholar

[20]

L. Ma and Z. Zhang, Symmetry of positive solutions for Choquard equations with fractional p-Laplacian, Nonlinear Anal., 182 (2019), 248-262. doi: 10.1016/j.na.2018.12.015. Google Scholar

[21]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467. doi: 10.1007/s00205-008-0208-3. Google Scholar

[22]

V. Moroz and J. V. Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813. doi: 10.1007/s11784-016-0373-1. Google Scholar

[23]

S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie-Verlag, Berlin, 1954.Google Scholar

[24]

L. Wu and P. Niu, Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations, Discrete Contin. Dyn. Syst., 39 (2018), 1573-1583. doi: 10.3934/dcds.2019069. Google Scholar

[25]

D. Xu and Y. Lei, Classification of positive solutions for a static Schrodinger-Maxwell equation with fractional Laplacian, Applied Math. Letters, 43 (2015), 85-89. doi: 10.1016/j.aml.2014.12.007. Google Scholar

[26]

W. Zhang and X. Wu, Nodal solutions for a fractional Choquard equation, J. Math. Anal. Appl., 464 (2018), 1167-1183. doi: 10.1016/j.jmaa.2018.04.048. Google Scholar

[1]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[2]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[3]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[4]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

[5]

Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393

[6]

Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593

[7]

Nikolaos S. Papageorgiou, George Smyrlis. Positive solutions for parametric $p$-Laplacian equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1545-1570. doi: 10.3934/cpaa.2016002

[8]

Leszek Gasiński. Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 143-158. doi: 10.3934/dcds.2007.17.143

[9]

Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

[10]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[11]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[12]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Pairs of positive solutions for $p$--Laplacian equations with combined nonlinearities. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1031-1051. doi: 10.3934/cpaa.2009.8.1031

[13]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[14]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[15]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[16]

Pei Ma, Yan Li, Jihui Zhang. Symmetry and nonexistence of positive solutions for fractional systems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1053-1070. doi: 10.3934/cpaa.2018051

[17]

Rongrong Yang, Zhongxue Lü. The properties of positive solutions to semilinear equations involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1073-1089. doi: 10.3934/cpaa.2019052

[18]

Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure & Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941

[19]

K. D. Chu, D. D. Hai. Positive solutions for the one-dimensional singular superlinear $ p $-Laplacian problem. Communications on Pure & Applied Analysis, 2020, 19 (1) : 241-252. doi: 10.3934/cpaa.2020013

[20]

Yutian Lei. On finite energy solutions of fractional order equations of the Choquard type. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1497-1515. doi: 10.3934/dcds.2019064

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (28)
  • HTML views (70)
  • Cited by (0)

Other articles
by authors

[Back to Top]