# American Institute of Mathematical Sciences

January  2020, 19(1): 455-492. doi: 10.3934/cpaa.2020023

## Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions

 1 Department of Mathematics and Computer Science, VNUHCM-University of Science, 227 Nguyen Van Cu Str., Dist.5, Ho Chi Minh City, Vietnam 2 Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Vietnam 3 University of Khanh Hoa, 01 Nguyen Chanh Str., Nha Trang City, Vietnam 4 Department of Mathematics, University of Architecture of Ho Chi Minh City, 196 Pasteur Str., Dist. 3, Ho Chi Minh City, Vietnam

* Corresponding author

Received  January 2019 Revised  May 2019 Published  July 2019

This paper is devoted to the study of a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Based on the Faedo-Galerkin method and standard arguments of density corresponding to the regularity of initial conditions, we first establish two local existence theorems of weak solutions. By the construction of a suitable Lyapunov functional, we next prove a blow up result and a decay result of global solutions.

Citation: Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023
##### References:
 [1] M. Bergounioux, N. T. Long and Alain P. N. Dinh, Mathematical model for a shock problem involving a linear viscoelastic bar, Nonlinear Anal., 43 (2001), 547–561. doi: 10.1016/S0362-546X(99)00218-7. Google Scholar [2] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano, Existence and uniform decay of solutions of a degenerate equation with nonlinear boundary damping and boundary memory source term, Nonlinear Anal., 38 (1999), 281–294. doi: 10.1016/S0362-546X(98)00195-3. Google Scholar [3] M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, On the existence and the uniform decay of a hyperbolic, Southeast Asian Bulletin of Mathematics, 24 (2000), 183–199. doi: 10.1007/s100120070002. Google Scholar [4] M. M. Cavalcanti, V. N. Domingos Cavalcanti and M. L. Santos, Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary, Applied Mathematics and Computation, 150 (2004), 439–465. doi: 10.1016/S0096-3003(03)00284-4. Google Scholar [5] Fei Liang and Hongjun Gao, Global nonexistence of positive initial-energy solutions for coupled nonlinear wave equations with damping and source terms, Abstract and Applied Analysis, Vol. 2011, Art. ID 760209, 14 pages. doi: 10.1155/2011/760209. Google Scholar [6] V. A. Khoa, L. T. P. Ngoc and N. T. Long, Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms, Evolution Equations & Control Theory, 8 (2019), 359–395.Google Scholar [7] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Vol. 1. Academic Press, NewYork, 1969. Google Scholar [8] C. Sideris and Yi Zhou, Almost global existence for 2-D incompressible isotropic elastodynamics, Trans. Amer. Math. Soc., 367 (2015), 8175–8197. doi: 10.1090/tran/6294. Google Scholar [9] Zhen Lei, On 2D Viscoelasticity with Small Strain, Arch. Rational Mech. Anal., 198 (2010), 13-37. doi: 10.1007/s00205-010-0346-2. Google Scholar [10] J. L. Lions, Quelques méthodes de ré solution des problèmes aux limites nonlinéaires, Dunod; Gauthier-Villars, Paris, 1969. Google Scholar [11] W. Liu, G. Li and L. Hong, General decay and blow-up of solutions for a system of viscoelastic equations of Kirchhoff type with strong damping, Journal of Function Spaces, Vol. 2014, Art. ID 284809, 21 pages. doi: 10.1155/2014/284809. Google Scholar [12] N. T. Long and Alain P. N. Dinh, On the quasilinear wave equation: $u_tt-\Delta u+f(u,$ $u_{t}) = 0$ associated with a mixed nonhomogeneous condition, Nonlinear Anal., 19 (1992). doi: 10.1016/0362-546X(92)90097-X. Google Scholar [13] N. T. Long and Alain P. N. Dinh, A semilinear wave equation associated with a linear differential equation with Cauchy data, Nonlinear Anal. TMA., 24 (1995), 1261–1279. doi: 10.1016/0362-546X(94)00196-O. Google Scholar [14] N. T. Long and T. N. Diem, On the nonlinear wave equation $u_tt-u_xx = f(x,$ $t, \, u,$ $u_{x},$ $u_{t})$ associated with the mixed homogeneous conditions, Nonlinear Anal. TMA., 29 (1997), 1217–1230. doi: 10.1016/S0362-546X(97)87360-9. Google Scholar [15] N. T. Long, Alain P. N. Dinh and T. N. Diem, On a shock problem involving a nonlinear viscoelastic bar, J. Boundary Value Problems, 2005 (2005), 337–358. doi: 10.1155/bvp.2005.337. Google Scholar [16] N. T. Long and L. T. P. Ngoc, On a nonlinear wave equation with boundary conditions of two-point type, J. Math. Anal. Appl., 385 (2012), 1070–1093. doi: 10.1016/j.jmaa.2011.07.034. Google Scholar [17] S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58–66. doi: 10.1002/mana.200310104. Google Scholar [18] Changxing Miao and Youbin Zhu, Global smooth solutions for a nonlinear system of wave equations, Nonlinear Anal., 67 (2007), 3136-3151. doi: 10.1016/j.na.2006.10.006. Google Scholar [19] L. T. P. Ngoc and N. T. Long, Existence, blow-up and exponential decay estimates for a system of nonlinear wave equations with nonlinear boundary conditions, Mathematical Methods in the Applied Sciences, 37 (2014), 464–487. doi: 10.1002/mma.2803. Google Scholar [20] L. T. P. Ngoc and N. T. Long, Existence and exponential decay for a nonlinear wave equation with a nonlocal boundary condition, Communications on Pure and Applied Analysis, 12 (2013), 2001–2029. doi: 10.3934/cpaa.2013.12.2001. Google Scholar [21] L. T. P. Ngoc, C. H. Hoa and N. T. Long, Existence, blow-up, and exponential decay estimates for a system of semilinear wave equations associated with the helical flows of Maxwell fluid, Mathematical Methods in the Applied Sciences, 39 (2016), 2334–2357. doi: 10.1002/mma.3643. Google Scholar [22] L. T. P. Ngoc, N. A. Triet, Alain P. N. Dinh and N. T. Long, Existence and exponential decay of solutions for a wave equation with integral nonlocal boundary conditions of memory type, Numerical Functional Analysis and Optimization, 38 (2017), 1173–1207. doi: 10.1080/01630563.2017.1320672. Google Scholar [23] L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution, Nonlinear Anal. TMA., 70 (2009), 3943–3965. doi: 10.1016/j.na.2008.08.004. Google Scholar [24] M. L. Santos, Decay rates for solutions of a system of wave equations with memory, Electronic J. Differential Equations, 38 (2002), 1–17. Google Scholar [25] C. Sideris, Global behavior of solutions to nonlinear wave equations in three dimensions, Comm. P.D.E., 8 (1983), 1291–1323. doi: 10.1080/03605308308820304. Google Scholar [26] C. Sideris, The null condition and global existence of nonlinear elastic waves, Invent. Math., 123 (1996), 323–342. doi: 10.1007/s002220050030. Google Scholar [27] C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Annals of Math., 151 (2000), 849–874. doi: 10.2307/121050. Google Scholar [28] L. X. Truong, L. T. P. Ngoc, Alain P. N. Dinh and N. T. Long, Existence, blow-up and exponential decay estimates for a nonlinear wave equation with boundary conditions of two-point type, Nonlinear Anal. TMA., 74 (2011), 6933–6949. doi: 10.1016/j.na.2011.07.015. Google Scholar [29] Jieqiong Wu and Shengjia Li, Blow-up for coupled nonlinear wave equations with damping and source, Applied Mathematics Letters, 24 (2011), 1093-1098. doi: 10.1016/j.aml.2011.01.030. Google Scholar [30] Zai-yun Zhang and Xiu-jin Miao, Global existence and uniform decay for wave equation with dissipative term and boundary damping, Computers and Mathematics with Applications, 59 (2010), 1003-1018. doi: 10.1016/j.camwa.2009.09.008. Google Scholar

show all references

##### References:
 [1] M. Bergounioux, N. T. Long and Alain P. N. Dinh, Mathematical model for a shock problem involving a linear viscoelastic bar, Nonlinear Anal., 43 (2001), 547–561. doi: 10.1016/S0362-546X(99)00218-7. Google Scholar [2] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano, Existence and uniform decay of solutions of a degenerate equation with nonlinear boundary damping and boundary memory source term, Nonlinear Anal., 38 (1999), 281–294. doi: 10.1016/S0362-546X(98)00195-3. Google Scholar [3] M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, On the existence and the uniform decay of a hyperbolic, Southeast Asian Bulletin of Mathematics, 24 (2000), 183–199. doi: 10.1007/s100120070002. Google Scholar [4] M. M. Cavalcanti, V. N. Domingos Cavalcanti and M. L. Santos, Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary, Applied Mathematics and Computation, 150 (2004), 439–465. doi: 10.1016/S0096-3003(03)00284-4. Google Scholar [5] Fei Liang and Hongjun Gao, Global nonexistence of positive initial-energy solutions for coupled nonlinear wave equations with damping and source terms, Abstract and Applied Analysis, Vol. 2011, Art. ID 760209, 14 pages. doi: 10.1155/2011/760209. Google Scholar [6] V. A. Khoa, L. T. P. Ngoc and N. T. Long, Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms, Evolution Equations & Control Theory, 8 (2019), 359–395.Google Scholar [7] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Vol. 1. Academic Press, NewYork, 1969. Google Scholar [8] C. Sideris and Yi Zhou, Almost global existence for 2-D incompressible isotropic elastodynamics, Trans. Amer. Math. Soc., 367 (2015), 8175–8197. doi: 10.1090/tran/6294. Google Scholar [9] Zhen Lei, On 2D Viscoelasticity with Small Strain, Arch. Rational Mech. Anal., 198 (2010), 13-37. doi: 10.1007/s00205-010-0346-2. Google Scholar [10] J. L. Lions, Quelques méthodes de ré solution des problèmes aux limites nonlinéaires, Dunod; Gauthier-Villars, Paris, 1969. Google Scholar [11] W. Liu, G. Li and L. Hong, General decay and blow-up of solutions for a system of viscoelastic equations of Kirchhoff type with strong damping, Journal of Function Spaces, Vol. 2014, Art. ID 284809, 21 pages. doi: 10.1155/2014/284809. Google Scholar [12] N. T. Long and Alain P. N. Dinh, On the quasilinear wave equation: $u_tt-\Delta u+f(u,$ $u_{t}) = 0$ associated with a mixed nonhomogeneous condition, Nonlinear Anal., 19 (1992). doi: 10.1016/0362-546X(92)90097-X. Google Scholar [13] N. T. Long and Alain P. N. Dinh, A semilinear wave equation associated with a linear differential equation with Cauchy data, Nonlinear Anal. TMA., 24 (1995), 1261–1279. doi: 10.1016/0362-546X(94)00196-O. Google Scholar [14] N. T. Long and T. N. Diem, On the nonlinear wave equation $u_tt-u_xx = f(x,$ $t, \, u,$ $u_{x},$ $u_{t})$ associated with the mixed homogeneous conditions, Nonlinear Anal. TMA., 29 (1997), 1217–1230. doi: 10.1016/S0362-546X(97)87360-9. Google Scholar [15] N. T. Long, Alain P. N. Dinh and T. N. Diem, On a shock problem involving a nonlinear viscoelastic bar, J. Boundary Value Problems, 2005 (2005), 337–358. doi: 10.1155/bvp.2005.337. Google Scholar [16] N. T. Long and L. T. P. Ngoc, On a nonlinear wave equation with boundary conditions of two-point type, J. Math. Anal. Appl., 385 (2012), 1070–1093. doi: 10.1016/j.jmaa.2011.07.034. Google Scholar [17] S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58–66. doi: 10.1002/mana.200310104. Google Scholar [18] Changxing Miao and Youbin Zhu, Global smooth solutions for a nonlinear system of wave equations, Nonlinear Anal., 67 (2007), 3136-3151. doi: 10.1016/j.na.2006.10.006. Google Scholar [19] L. T. P. Ngoc and N. T. Long, Existence, blow-up and exponential decay estimates for a system of nonlinear wave equations with nonlinear boundary conditions, Mathematical Methods in the Applied Sciences, 37 (2014), 464–487. doi: 10.1002/mma.2803. Google Scholar [20] L. T. P. Ngoc and N. T. Long, Existence and exponential decay for a nonlinear wave equation with a nonlocal boundary condition, Communications on Pure and Applied Analysis, 12 (2013), 2001–2029. doi: 10.3934/cpaa.2013.12.2001. Google Scholar [21] L. T. P. Ngoc, C. H. Hoa and N. T. Long, Existence, blow-up, and exponential decay estimates for a system of semilinear wave equations associated with the helical flows of Maxwell fluid, Mathematical Methods in the Applied Sciences, 39 (2016), 2334–2357. doi: 10.1002/mma.3643. Google Scholar [22] L. T. P. Ngoc, N. A. Triet, Alain P. N. Dinh and N. T. Long, Existence and exponential decay of solutions for a wave equation with integral nonlocal boundary conditions of memory type, Numerical Functional Analysis and Optimization, 38 (2017), 1173–1207. doi: 10.1080/01630563.2017.1320672. Google Scholar [23] L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution, Nonlinear Anal. TMA., 70 (2009), 3943–3965. doi: 10.1016/j.na.2008.08.004. Google Scholar [24] M. L. Santos, Decay rates for solutions of a system of wave equations with memory, Electronic J. Differential Equations, 38 (2002), 1–17. Google Scholar [25] C. Sideris, Global behavior of solutions to nonlinear wave equations in three dimensions, Comm. P.D.E., 8 (1983), 1291–1323. doi: 10.1080/03605308308820304. Google Scholar [26] C. Sideris, The null condition and global existence of nonlinear elastic waves, Invent. Math., 123 (1996), 323–342. doi: 10.1007/s002220050030. Google Scholar [27] C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Annals of Math., 151 (2000), 849–874. doi: 10.2307/121050. Google Scholar [28] L. X. Truong, L. T. P. Ngoc, Alain P. N. Dinh and N. T. Long, Existence, blow-up and exponential decay estimates for a nonlinear wave equation with boundary conditions of two-point type, Nonlinear Anal. TMA., 74 (2011), 6933–6949. doi: 10.1016/j.na.2011.07.015. Google Scholar [29] Jieqiong Wu and Shengjia Li, Blow-up for coupled nonlinear wave equations with damping and source, Applied Mathematics Letters, 24 (2011), 1093-1098. doi: 10.1016/j.aml.2011.01.030. Google Scholar [30] Zai-yun Zhang and Xiu-jin Miao, Global existence and uniform decay for wave equation with dissipative term and boundary damping, Computers and Mathematics with Applications, 59 (2010), 1003-1018. doi: 10.1016/j.camwa.2009.09.008. Google Scholar
 [1] Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 [2] Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 [3] Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521 [4] Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54 [5] Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 [6] Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683 [7] Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations & Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019 [8] Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669 [9] Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771 [10] Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677 [11] Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027 [12] Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001 [13] Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100 [14] Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621 [15] Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63 [16] Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182 [17] Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 [18] Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113 [19] Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209 [20] Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

2018 Impact Factor: 0.925

## Metrics

• HTML views (79)
• Cited by (0)

• on AIMS