January  2020, 19(1): 145-174. doi: 10.3934/cpaa.2020009

Local integral manifolds for nonautonomous and ill-posed equations with sectorially dichotomous operator

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China

Received  October 2018 Revised  January 2019 Published  July 2019

Fund Project: This work was supported by the National Natural Science Foundations of China No. 11431008 and No. 11871041

We show the existence and $ C^{k, \gamma} $ smoothness of local integral manifolds at an equilibrium point for nonautonomous and ill-posed equations with sectorially dichotomous operator, provided that the nonlinearities are $ C^{k, \gamma} $ smooth with respect to the state variable. $ C^{k, \gamma} $ local unstable integral manifold follows from $ C^{k, \gamma} $ local stable integral manifold by reversing time variable directly. As an application, an elliptic PDE in infinite cylindrical domain is discussed.

Citation: Lianwang Deng. Local integral manifolds for nonautonomous and ill-posed equations with sectorially dichotomous operator. Communications on Pure & Applied Analysis, 2020, 19 (1) : 145-174. doi: 10.3934/cpaa.2020009
References:
[1]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, 2$^{nd}$ edition, Monographs in Mathematics, vol. 96, Birkhäuser/Springer Basel AG, Basel, 2011. doi: 10.1007/978-3-0348-0087-7. Google Scholar

[2]

A. CalsinaX. Mora and J. Solá-Morales, The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limits, J. Differential Equations, 102 (1993), 244-304. doi: 10.1006/jdeq.1993.1030. Google Scholar

[3]

S.-N. Chow and K. Lu, $C^{k}$ centre unstable manifolds, Proc. Roy. Soc. Edinburgh Sect. A, 108 (1988), 303-320. doi: 10.1017/S0308210500014682. Google Scholar

[4]

L. W. Deng and D. M. Xiao, Dichotomous solutions for semilinear ill-posed equations with sectorially dichotomous operator, J. Differential Equations, 267 (2019), 1201-1246. doi: 10.1016/j.jde.2019.02.006. Google Scholar

[5]

M. S. ElBialy, Locally Lipschitz perturbations of bi-semigroup, Commun. Pure Appl. Anal., 9 (2010), 327-349. doi: 10.3934/cpaa.2010.9.327. Google Scholar

[6]

M. S. ElBialy, Stable and unstable manifolds for hyperbolic bi-semigroups, J. Funct. Anal., 262 (2012), 2516-2560. doi: 10.1016/j.jfa.2011.11.031. Google Scholar

[7]

K.-J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. doi: 10.1007/b97696. Google Scholar

[8]

A. Haraux, Nonlinear Evolution Equations-Global Behavior of Solutions, Lecture Notes in Math., Vol.841, Springer, Berlin, 1981. doi: 10.1007/BFb0089606. Google Scholar

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Vol.840, Springer, Berlin, 1981. doi: 10.1007/BFb0089647. Google Scholar

[10]

K. Kirchgassner, Wave solutions of reversible systems and applications, J. Differential Equations, 45 (1982), 113-127. doi: 10.1016/0022-0396(82)90058-4. Google Scholar

[11]

O. E. Lanford, Bifurcation of periodic solutions into invariant tori: The work of Ruelle and Takens, in Nonlinear Problems in the Physical Sciences and Biology (eds. I. Stakgold, D. D. Joseph and D. H. Sattinger), Lecture Notes in Mathematics, 322 (1973), 159–192. doi: 10.1007/BFb0060566. Google Scholar

[12]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9234-6. Google Scholar

[13]

R. de la Llave, A smooth center manifold theorem which applies to some ill-posed partial differential equations with unbounded nonlinearities, J. Dynam. Differential Equations, 21 (2009), 371-415. doi: 10.1007/s10884-009-9140-y. Google Scholar

[14]

Y. Latushkin and B. Layton, The optimal gap condition for invariant manifolds, Discrete Contin. Dynam. Systems, 5 (1999), 233-268. doi: 10.3934/dcds.1999.5.233. Google Scholar

[15]

A. Mielke, A reduction principle for nonautonomous systems in infinite-dimensional spaces, J. Differential Equations, 65 (1986), 68-88. doi: 10.1016/0022-0396(86)90042-2. Google Scholar

[16]

A. Mielke, Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci., 10 (1988), 51-66. doi: 10.1002/mma.1670100105. Google Scholar

[17]

A. Mielke, Normal hyperbolicity of center manifolds and Saint-Venant's principle, Arch. Rational Mech. Anal., 110 (1988), 353-372. doi: 10.1007/BF00393272. Google Scholar

[18]

A. Mielke, On nonlinear problems of mixed type: A qualitative theory using infinite-dimensional center manifolds, J. Dynam. Differential Equations, 4 (1992), 419-443. doi: 10.1007/BF01053805. Google Scholar

[19]

A. Mielke, Essential manifolds for an elliptic problem in an infinite strip, J. Differential Equations, 110 (1994), 322-355. doi: 10.1006/jdeq.1994.1070. Google Scholar

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[21]

J. C. Robinson, Infinite-Dimensional Dynamical System: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge texts in Applied Mathematics, Cambridge University press, 2001. doi: 10.1007/978-94-010-0732-0. Google Scholar

[22]

K. Taira, Analytic Semigroups and Semilinear Initial Boundary Value Problems, London Math. Soc. Lect. Notes Ser., vol.2233, Cambridge University Press, 1995. doi: 10.1017/CBO9780511662362. Google Scholar

[23]

C. Tretter and C. Wyss, Dichotomous Hamiltonians with unbounded entries and solutions of Riccati equations, J. Evol. Equ., 14 (2014), 121-153. doi: 10.1007/s00028-013-0210-6. Google Scholar

[24]

A. Zamboni, Maximal regularity for evolution problems on the line, Differential Integral Equations, 22 (2009), 519-542. Google Scholar

show all references

References:
[1]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, 2$^{nd}$ edition, Monographs in Mathematics, vol. 96, Birkhäuser/Springer Basel AG, Basel, 2011. doi: 10.1007/978-3-0348-0087-7. Google Scholar

[2]

A. CalsinaX. Mora and J. Solá-Morales, The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limits, J. Differential Equations, 102 (1993), 244-304. doi: 10.1006/jdeq.1993.1030. Google Scholar

[3]

S.-N. Chow and K. Lu, $C^{k}$ centre unstable manifolds, Proc. Roy. Soc. Edinburgh Sect. A, 108 (1988), 303-320. doi: 10.1017/S0308210500014682. Google Scholar

[4]

L. W. Deng and D. M. Xiao, Dichotomous solutions for semilinear ill-posed equations with sectorially dichotomous operator, J. Differential Equations, 267 (2019), 1201-1246. doi: 10.1016/j.jde.2019.02.006. Google Scholar

[5]

M. S. ElBialy, Locally Lipschitz perturbations of bi-semigroup, Commun. Pure Appl. Anal., 9 (2010), 327-349. doi: 10.3934/cpaa.2010.9.327. Google Scholar

[6]

M. S. ElBialy, Stable and unstable manifolds for hyperbolic bi-semigroups, J. Funct. Anal., 262 (2012), 2516-2560. doi: 10.1016/j.jfa.2011.11.031. Google Scholar

[7]

K.-J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. doi: 10.1007/b97696. Google Scholar

[8]

A. Haraux, Nonlinear Evolution Equations-Global Behavior of Solutions, Lecture Notes in Math., Vol.841, Springer, Berlin, 1981. doi: 10.1007/BFb0089606. Google Scholar

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Vol.840, Springer, Berlin, 1981. doi: 10.1007/BFb0089647. Google Scholar

[10]

K. Kirchgassner, Wave solutions of reversible systems and applications, J. Differential Equations, 45 (1982), 113-127. doi: 10.1016/0022-0396(82)90058-4. Google Scholar

[11]

O. E. Lanford, Bifurcation of periodic solutions into invariant tori: The work of Ruelle and Takens, in Nonlinear Problems in the Physical Sciences and Biology (eds. I. Stakgold, D. D. Joseph and D. H. Sattinger), Lecture Notes in Mathematics, 322 (1973), 159–192. doi: 10.1007/BFb0060566. Google Scholar

[12]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9234-6. Google Scholar

[13]

R. de la Llave, A smooth center manifold theorem which applies to some ill-posed partial differential equations with unbounded nonlinearities, J. Dynam. Differential Equations, 21 (2009), 371-415. doi: 10.1007/s10884-009-9140-y. Google Scholar

[14]

Y. Latushkin and B. Layton, The optimal gap condition for invariant manifolds, Discrete Contin. Dynam. Systems, 5 (1999), 233-268. doi: 10.3934/dcds.1999.5.233. Google Scholar

[15]

A. Mielke, A reduction principle for nonautonomous systems in infinite-dimensional spaces, J. Differential Equations, 65 (1986), 68-88. doi: 10.1016/0022-0396(86)90042-2. Google Scholar

[16]

A. Mielke, Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci., 10 (1988), 51-66. doi: 10.1002/mma.1670100105. Google Scholar

[17]

A. Mielke, Normal hyperbolicity of center manifolds and Saint-Venant's principle, Arch. Rational Mech. Anal., 110 (1988), 353-372. doi: 10.1007/BF00393272. Google Scholar

[18]

A. Mielke, On nonlinear problems of mixed type: A qualitative theory using infinite-dimensional center manifolds, J. Dynam. Differential Equations, 4 (1992), 419-443. doi: 10.1007/BF01053805. Google Scholar

[19]

A. Mielke, Essential manifolds for an elliptic problem in an infinite strip, J. Differential Equations, 110 (1994), 322-355. doi: 10.1006/jdeq.1994.1070. Google Scholar

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[21]

J. C. Robinson, Infinite-Dimensional Dynamical System: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge texts in Applied Mathematics, Cambridge University press, 2001. doi: 10.1007/978-94-010-0732-0. Google Scholar

[22]

K. Taira, Analytic Semigroups and Semilinear Initial Boundary Value Problems, London Math. Soc. Lect. Notes Ser., vol.2233, Cambridge University Press, 1995. doi: 10.1017/CBO9780511662362. Google Scholar

[23]

C. Tretter and C. Wyss, Dichotomous Hamiltonians with unbounded entries and solutions of Riccati equations, J. Evol. Equ., 14 (2014), 121-153. doi: 10.1007/s00028-013-0210-6. Google Scholar

[24]

A. Zamboni, Maximal regularity for evolution problems on the line, Differential Integral Equations, 22 (2009), 519-542. Google Scholar

[1]

Guozhi Dong, Bert Jüttler, Otmar Scherzer, Thomas Takacs. Convergence of Tikhonov regularization for solving ill-posed operator equations with solutions defined on surfaces. Inverse Problems & Imaging, 2017, 11 (2) : 221-246. doi: 10.3934/ipi.2017011

[2]

Markus Haltmeier, Richard Kowar, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations II: Applications. Inverse Problems & Imaging, 2007, 1 (3) : 507-523. doi: 10.3934/ipi.2007.1.507

[3]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[4]

Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems & Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033

[5]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[6]

Johann Baumeister, Barbara Kaltenbacher, Antonio Leitão. On Levenberg-Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed equations. Inverse Problems & Imaging, 2010, 4 (3) : 335-350. doi: 10.3934/ipi.2010.4.335

[7]

Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467

[8]

Markus Haltmeier, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations I: convergence analysis. Inverse Problems & Imaging, 2007, 1 (2) : 289-298. doi: 10.3934/ipi.2007.1.289

[9]

Adriano De Cezaro, Johann Baumeister, Antonio Leitão. Modified iterated Tikhonov methods for solving systems of nonlinear ill-posed equations. Inverse Problems & Imaging, 2011, 5 (1) : 1-17. doi: 10.3934/ipi.2011.5.1

[10]

Matthew A. Fury. Estimates for solutions of nonautonomous semilinear ill-posed problems. Conference Publications, 2015, 2015 (special) : 479-488. doi: 10.3934/proc.2015.0479

[11]

Paola Favati, Grazia Lotti, Ornella Menchi, Francesco Romani. An inner-outer regularizing method for ill-posed problems. Inverse Problems & Imaging, 2014, 8 (2) : 409-420. doi: 10.3934/ipi.2014.8.409

[12]

Matthew A. Fury. Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259-272. doi: 10.3934/proc.2013.2013.259

[13]

Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case. Inverse Problems & Imaging, 2015, 9 (4) : 971-1002. doi: 10.3934/ipi.2015.9.971

[14]

Felix Lucka, Katharina Proksch, Christoph Brune, Nicolai Bissantz, Martin Burger, Holger Dette, Frank Wübbeling. Risk estimators for choosing regularization parameters in ill-posed problems - properties and limitations. Inverse Problems & Imaging, 2018, 12 (5) : 1121-1155. doi: 10.3934/ipi.2018047

[15]

Youri V. Egorov, Evariste Sanchez-Palencia. Remarks on certain singular perturbations with ill-posed limit in shell theory and elasticity. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1293-1305. doi: 10.3934/dcds.2011.31.1293

[16]

Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155

[17]

Alfredo Lorenzi, Luca Lorenzi. A strongly ill-posed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$. Evolution Equations & Control Theory, 2014, 3 (3) : 499-524. doi: 10.3934/eect.2014.3.499

[18]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[19]

David Salas, Lionel Thibault, Emilio Vilches. On smoothness of solutions to projected differential equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2255-2283. doi: 10.3934/dcds.2019095

[20]

Yaozhong Hu, David Nualart, Xiaobin Sun, Yingchao Xie. Smoothness of density for stochastic differential equations with Markovian switching. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3615-3631. doi: 10.3934/dcdsb.2018307

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (29)
  • HTML views (101)
  • Cited by (0)

Other articles
by authors

[Back to Top]