• Previous Article
    A note on multiplicity of solutions near resonance of semilinear elliptic equations
  • CPAA Home
  • This Issue
  • Next Article
    Stability of solutions to the Riemann problem for a thin film model of a perfectly soluble anti-surfactant solution
November  2019, 18(6): 3367-3387. doi: 10.3934/cpaa.2019152

Existence results of solitary wave solutions for a delayed Camassa-Holm-KP equation

1. 

School of Mathematics, Jilin University, Changchun, Jilin 130012, China

2. 

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China

3. 

School of Mathematics and Statistics and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun, Jilin 130024, China

* Corresponding author

Received  August 2018 Revised  January 2019 Published  May 2019

Fund Project: This work is supported by the Natural Science Foundation of China (Grant Nos. 11871251, 11771185, 11671071 and 11871140), the Fundamental Research Funds for the Central Universities at Jilin University (no. 2017TD–18), and the Special Funds of Provincial Industrial Innovation in Jilin Province (no. 2017C028–1)

This paper is concerned with the Camassa-Holm-KP equation, which is a model for shallow water waves. By using the analysis of the phase space, we obtain some qualitative properties of equilibrium points and existence results of solitary wave solutions for the Camassa-Holm-KP equation without delay. Furthermore we show the existence of solitary wave solutions for the equation with a special local delay convolution kernel by combining the geometric singular perturbation theory and invariant manifold theory. In addition, we discuss the existence of solitary wave solutions for the Camassa-Holm-KP equation with strength $ 1 $ of nonlinearity, and prove the monotonicity of the wave speed by analyzing the ratio of the Abelian integral.

Citation: Xiaowan Li, Zengji Du, Shuguan Ji. Existence results of solitary wave solutions for a delayed Camassa-Holm-KP equation. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3367-3387. doi: 10.3934/cpaa.2019152
References:
[1] M. AblowitzP. Clarkson and So litons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998.
[2]

S. Ai, Traveling wave fronts for generalized Fisher equations with spatio-temporal delays, J. Differential Equations, 232 (2007), 104-133. doi: 10.1016/j.jde.2006.08.015.

[3]

S. AiS. Chow and Y. Yi, Travelling wave solutions in a tissue interaction model for skin pattern formation, J. Dynam. Differential Equations, 15 (2003), 517-534. doi: 10.1023/B:JODY.0000009746.52357.28.

[4]

W. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems, J. Funct. Anal., 196 (2002), 211-264. doi: 10.1016/S0022-1236(02)00013-7.

[5]

A. Biswas, 1-Soliton solution of the generalized Camassa-Holm Kadomtsev-Petviashvili equation, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 2524-2527. doi: 10.1016/j.cnsns.2008.09.023.

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked soliton, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661.

[7]

A. ChenL. Guo and X. Deng, Existence of solitary waves and periodic waves for a perturbed generalized BBM equation, J. Differential Equations, 261 (2016), 5324-5349. doi: 10.1016/j.jde.2016.08.003.

[8]

Z. DuJ. Li and X. Li, The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach, J. Funct. Anal., 275 (2018), 988-1007. doi: 10.1016/j.jfa.2018.05.005.

[9]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98. doi: 10.1016/0022-0396(79)90152-9.

[10]

B. Fuchssteiner and A. Fokas, Symplectic structures, their backland transformations and hereditary symmetries, Phys. D, 4 (1981), 47-66. doi: 10.1016/0167-2789(81)90004-X.

[11]

A. Gourley and G. Ruan, Convergence and traveling wave fronts in functional differential equations with nonlocal terms: A competition model, SIAM. J. Math. Anal., 35 (2003), 806-822. doi: 10.1137/S003614100139991.

[12]

G. Hek, Geometrical singular perturbation theory in biological practice, J. Math. Biol., 60 (2010), 347-386. doi: 10.1007/s00285-009-0266-7.

[13]

C. HsuT. Yang and C. Yang, Diversity of traveling wave solutions in FitzHugh-Nagumo type equations, J. Differential Equations, 247 (2009), 1185-1205. doi: 10.1016/j.jde.2009.03.023.

[14]

P. Isaza and J. Mejia, On the support of solutions to the Kadomtsev-Petviashvili (KP-Ⅱ) equation, Commun. Pure Appl. Anal., 10 (2011), 1239-1255. doi: 10.3934/cpaa.2011.10.1239.

[15]

J. IsazaL. Mejia and N. Tzvetkov, A smoothing effect and polynomial growth of the Sobolev norms for the KP-Ⅱ equation, J. Differential Equations, 220 (2006), 1-17. doi: 10.1016/j.jde.2004.10.002.

[16]

C. Jones, Geometrical singular perturbation theory, In Dynamical Systems, Lecture Notes in Mathematics (R. Johnson ed.), vol. 1609. Springer, New York, 1995. doi: 10.1007/BFb0095239.

[17]

B. Kadomtsev and V. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl., 15 (1970), 539-541.

[18]

D. Korteweg and G. Vries, On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves, Philos. Mag. R Soc. London, 39 (1895), 422-443. doi: 10.1080/14786449508620739.

[19]

S. Lai and Y. Xu, The compact and noncompact structures for two types of generalized Camassa-Holm-KP equations, Math. Comput. Model., 28 (2008), 1089-1098. doi: 10.1016/j.mcm.2007.06.020.

[20]

J. Lenells, Traveling wave solutions of the Camassa-Holm equation, J. Differential Equations, 271 (2005), 393-430. doi: 10.1016/j.jde.2004.09.007.

[21]

C. Li and K. Lu, Slow divergence integral and its application to classical Liénard equations of degree 5, J. Differential Equations, 257 (2014), 4437-4469. doi: 10.1016/j.jde.2014.08.015.

[22]

C. Li and H. Zhu, Canard cycles for predator-prey systems with Holling types of functional response, J. Differential Equations, 254 (2013), 879-910. doi: 10.1016/j.jde.2012.10.003.

[23]

X. Liu, Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity, Discrete. Contin. Dyn. Syst., 38 (2018), 5505-5521.

[24]

X. LiuZ. Qiao and Z. Yin, On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity, Commun. Pure Appl. Anal., 13 (2014), 1283-1304. doi: 10.3934/cpaa.2014.13.1283.

[25]

W. Liu and E. Vleck, Turning points and traveling waves in FitzHugh-Nagumo type equations, J. Differential Equations, 225 (2006), 381-410. doi: 10.1016/j.jde.2005.10.006.

[26]

N. Lu and C. Zeng, Normally elliptic singular perturbations and persistence of homoclinic orbits, J. Differential Equations, 250 (2011), 4124-4176. doi: 10.1016/j.jde.2011.02.001.

[27]

P. Maesschalck and F. Dumortier, Canard solutions at non-generic turning points, Trans. Amer. Math. Soc., 358 (2006), 2291-2334. doi: 10.1090/S0002-9947-05-03839-0.

[28]

L. MolinetJ. Saut and N. Tzvetkov, Global well-posedness for the KP-Ⅱ equation on the background of a non-localized solution, Ann. I. H. Poincare-AN, 28 (2011), 653-676. doi: 10.1016/j.anihpc.2011.04.004.

[29]

E. Novruzov and A. Hagverdiyev, On the behavior of the solution of the dissipative Camassa-Holm equation with the arbitrary dispersion coefficient, J. Differential Equations, 257 (2014), 4525-4541. doi: 10.1016/j.jde.2014.08.016.

[30]

C. Ou and J. Wu, Persistence of wave fronts in delayed nonlocal reaction-diffusion equations, J. Differential Equations, 238 (2007), 219-261. doi: 10.1016/j.jde.2006.12.010.

[31]

V. Petviashvili and V. Yan'kov, Solitons and turbulence, Rev. Plasma Phys., XIV (1989), 1-62.

[32]

C. QuY. Fu and Y. Liu, Well-posedness, wave breaking and peakons for a modified $\mu$-Camassa-Holm equation, J. Funct. Anal., 266 (2014), 433-477. doi: 10.1016/j.jfa.2013.09.021.

[33]

J. Saut and N. Tzvetkov, The cauchy problem for higher-order KP equations, J. Differential Equations, 153 (1999), 196-222. doi: 10.1006/jdeq.1998.3534.

[34]

P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, J. Differential Equations, 92 (1991), 252-281. doi: 10.1016/0022-0396(91)90049-F.

[35]

A. Tovbis, Breaking of symmetrical periodic solutions in a singularly perturbed KdV model, SIAM J. Math. Anal., 40 (2008), 1516-1549. doi: 10.1137/070694053.

[36]

A. Wazwaz, The Camassa-Holm-KP equations with compact and noncompact travelling wave solutions, Appl Math Comput, 170 (2005), 347-360. doi: 10.1016/j.amc.2004.12.002.

[37]

M. WeiX. Sun and S. Tang, Single peak solitary wave solutions for the CH-KP(2, 1) equation under boundary condition, J. Differential Equations, 259 (2015), 628-641. doi: 10.1016/j.jde.2015.02.015.

[38]

L. YangZ. RongS. Zhou and C. Mu, Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics, Discrete. Contin. Dyn. Syst., 38 (2018), 5205-5220. doi: 10.3934/dcds.2018230.

[39]

S. Yang and T. Xu, Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system, Discrete. Contin. Dyn. Syst., 38 (2018), 329-341. doi: 10.3934/dcds.2018016.

[40]

V. Zakharov and E. Kuznetsov, On three-dimensional solitons, Sov. Phys., 39 (1974), 285-288.

[41]

K. ZhangS. Tang and Z. Wang, Bifurcation of travelling wave solutions for the generalized Camassa-Holm-KP equations, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 564-572. doi: 10.1016/j.cnsns.2009.04.027.

[42]

L. Zhang and B. Liu, Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system, Discrete. Contin. Dyn. Syst., 38 (2018), 2655-2685. doi: 10.3934/dcds.2018112.

show all references

References:
[1] M. AblowitzP. Clarkson and So litons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998.
[2]

S. Ai, Traveling wave fronts for generalized Fisher equations with spatio-temporal delays, J. Differential Equations, 232 (2007), 104-133. doi: 10.1016/j.jde.2006.08.015.

[3]

S. AiS. Chow and Y. Yi, Travelling wave solutions in a tissue interaction model for skin pattern formation, J. Dynam. Differential Equations, 15 (2003), 517-534. doi: 10.1023/B:JODY.0000009746.52357.28.

[4]

W. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems, J. Funct. Anal., 196 (2002), 211-264. doi: 10.1016/S0022-1236(02)00013-7.

[5]

A. Biswas, 1-Soliton solution of the generalized Camassa-Holm Kadomtsev-Petviashvili equation, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 2524-2527. doi: 10.1016/j.cnsns.2008.09.023.

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked soliton, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661.

[7]

A. ChenL. Guo and X. Deng, Existence of solitary waves and periodic waves for a perturbed generalized BBM equation, J. Differential Equations, 261 (2016), 5324-5349. doi: 10.1016/j.jde.2016.08.003.

[8]

Z. DuJ. Li and X. Li, The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach, J. Funct. Anal., 275 (2018), 988-1007. doi: 10.1016/j.jfa.2018.05.005.

[9]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98. doi: 10.1016/0022-0396(79)90152-9.

[10]

B. Fuchssteiner and A. Fokas, Symplectic structures, their backland transformations and hereditary symmetries, Phys. D, 4 (1981), 47-66. doi: 10.1016/0167-2789(81)90004-X.

[11]

A. Gourley and G. Ruan, Convergence and traveling wave fronts in functional differential equations with nonlocal terms: A competition model, SIAM. J. Math. Anal., 35 (2003), 806-822. doi: 10.1137/S003614100139991.

[12]

G. Hek, Geometrical singular perturbation theory in biological practice, J. Math. Biol., 60 (2010), 347-386. doi: 10.1007/s00285-009-0266-7.

[13]

C. HsuT. Yang and C. Yang, Diversity of traveling wave solutions in FitzHugh-Nagumo type equations, J. Differential Equations, 247 (2009), 1185-1205. doi: 10.1016/j.jde.2009.03.023.

[14]

P. Isaza and J. Mejia, On the support of solutions to the Kadomtsev-Petviashvili (KP-Ⅱ) equation, Commun. Pure Appl. Anal., 10 (2011), 1239-1255. doi: 10.3934/cpaa.2011.10.1239.

[15]

J. IsazaL. Mejia and N. Tzvetkov, A smoothing effect and polynomial growth of the Sobolev norms for the KP-Ⅱ equation, J. Differential Equations, 220 (2006), 1-17. doi: 10.1016/j.jde.2004.10.002.

[16]

C. Jones, Geometrical singular perturbation theory, In Dynamical Systems, Lecture Notes in Mathematics (R. Johnson ed.), vol. 1609. Springer, New York, 1995. doi: 10.1007/BFb0095239.

[17]

B. Kadomtsev and V. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl., 15 (1970), 539-541.

[18]

D. Korteweg and G. Vries, On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves, Philos. Mag. R Soc. London, 39 (1895), 422-443. doi: 10.1080/14786449508620739.

[19]

S. Lai and Y. Xu, The compact and noncompact structures for two types of generalized Camassa-Holm-KP equations, Math. Comput. Model., 28 (2008), 1089-1098. doi: 10.1016/j.mcm.2007.06.020.

[20]

J. Lenells, Traveling wave solutions of the Camassa-Holm equation, J. Differential Equations, 271 (2005), 393-430. doi: 10.1016/j.jde.2004.09.007.

[21]

C. Li and K. Lu, Slow divergence integral and its application to classical Liénard equations of degree 5, J. Differential Equations, 257 (2014), 4437-4469. doi: 10.1016/j.jde.2014.08.015.

[22]

C. Li and H. Zhu, Canard cycles for predator-prey systems with Holling types of functional response, J. Differential Equations, 254 (2013), 879-910. doi: 10.1016/j.jde.2012.10.003.

[23]

X. Liu, Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity, Discrete. Contin. Dyn. Syst., 38 (2018), 5505-5521.

[24]

X. LiuZ. Qiao and Z. Yin, On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity, Commun. Pure Appl. Anal., 13 (2014), 1283-1304. doi: 10.3934/cpaa.2014.13.1283.

[25]

W. Liu and E. Vleck, Turning points and traveling waves in FitzHugh-Nagumo type equations, J. Differential Equations, 225 (2006), 381-410. doi: 10.1016/j.jde.2005.10.006.

[26]

N. Lu and C. Zeng, Normally elliptic singular perturbations and persistence of homoclinic orbits, J. Differential Equations, 250 (2011), 4124-4176. doi: 10.1016/j.jde.2011.02.001.

[27]

P. Maesschalck and F. Dumortier, Canard solutions at non-generic turning points, Trans. Amer. Math. Soc., 358 (2006), 2291-2334. doi: 10.1090/S0002-9947-05-03839-0.

[28]

L. MolinetJ. Saut and N. Tzvetkov, Global well-posedness for the KP-Ⅱ equation on the background of a non-localized solution, Ann. I. H. Poincare-AN, 28 (2011), 653-676. doi: 10.1016/j.anihpc.2011.04.004.

[29]

E. Novruzov and A. Hagverdiyev, On the behavior of the solution of the dissipative Camassa-Holm equation with the arbitrary dispersion coefficient, J. Differential Equations, 257 (2014), 4525-4541. doi: 10.1016/j.jde.2014.08.016.

[30]

C. Ou and J. Wu, Persistence of wave fronts in delayed nonlocal reaction-diffusion equations, J. Differential Equations, 238 (2007), 219-261. doi: 10.1016/j.jde.2006.12.010.

[31]

V. Petviashvili and V. Yan'kov, Solitons and turbulence, Rev. Plasma Phys., XIV (1989), 1-62.

[32]

C. QuY. Fu and Y. Liu, Well-posedness, wave breaking and peakons for a modified $\mu$-Camassa-Holm equation, J. Funct. Anal., 266 (2014), 433-477. doi: 10.1016/j.jfa.2013.09.021.

[33]

J. Saut and N. Tzvetkov, The cauchy problem for higher-order KP equations, J. Differential Equations, 153 (1999), 196-222. doi: 10.1006/jdeq.1998.3534.

[34]

P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, J. Differential Equations, 92 (1991), 252-281. doi: 10.1016/0022-0396(91)90049-F.

[35]

A. Tovbis, Breaking of symmetrical periodic solutions in a singularly perturbed KdV model, SIAM J. Math. Anal., 40 (2008), 1516-1549. doi: 10.1137/070694053.

[36]

A. Wazwaz, The Camassa-Holm-KP equations with compact and noncompact travelling wave solutions, Appl Math Comput, 170 (2005), 347-360. doi: 10.1016/j.amc.2004.12.002.

[37]

M. WeiX. Sun and S. Tang, Single peak solitary wave solutions for the CH-KP(2, 1) equation under boundary condition, J. Differential Equations, 259 (2015), 628-641. doi: 10.1016/j.jde.2015.02.015.

[38]

L. YangZ. RongS. Zhou and C. Mu, Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics, Discrete. Contin. Dyn. Syst., 38 (2018), 5205-5220. doi: 10.3934/dcds.2018230.

[39]

S. Yang and T. Xu, Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system, Discrete. Contin. Dyn. Syst., 38 (2018), 329-341. doi: 10.3934/dcds.2018016.

[40]

V. Zakharov and E. Kuznetsov, On three-dimensional solitons, Sov. Phys., 39 (1974), 285-288.

[41]

K. ZhangS. Tang and Z. Wang, Bifurcation of travelling wave solutions for the generalized Camassa-Holm-KP equations, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 564-572. doi: 10.1016/j.cnsns.2009.04.027.

[42]

L. Zhang and B. Liu, Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system, Discrete. Contin. Dyn. Syst., 38 (2018), 2655-2685. doi: 10.3934/dcds.2018112.

Figure 1.  The phase portraits of system (19) for n is odd
Figure 2.  The phase portraits of system (19) for n is even
[1]

Rui Liu. Several new types of solitary wave solutions for the generalized Camassa-Holm-Degasperis-Procesi equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 77-90. doi: 10.3934/cpaa.2010.9.77

[2]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[3]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[4]

Rossen I. Ivanov. Conformal and Geometric Properties of the Camassa-Holm Hierarchy. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 545-554. doi: 10.3934/dcds.2007.19.545

[5]

John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851

[6]

Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029

[7]

Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230

[8]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

[9]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[10]

Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483

[11]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[12]

Shaoyong Lai, Qichang Xie, Yunxi Guo, YongHong Wu. The existence of weak solutions for a generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 45-57. doi: 10.3934/cpaa.2011.10.45

[13]

Alberto Bressan, Geng Chen, Qingtian Zhang. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 25-42. doi: 10.3934/dcds.2015.35.25

[14]

H. A. Erbay, S. Erbay, A. Erkip. The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6101-6116. doi: 10.3934/dcds.2016066

[15]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[16]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[17]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[18]

Jerry L. Bona, Didier Pilod. Stability of solitary-wave solutions to the Hirota-Satsuma equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1391-1413. doi: 10.3934/dcds.2010.27.1391

[19]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[20]

Katrin Grunert, Helge Holden, Xavier Raynaud. Lipschitz metric for the Camassa--Holm equation on the line. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2809-2827. doi: 10.3934/dcds.2013.33.2809

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (29)
  • HTML views (91)
  • Cited by (0)

Other articles
by authors

[Back to Top]