November  2019, 18(6): 3137-3160. doi: 10.3934/cpaa.2019141

Pointwise gradient estimates for subquadratic elliptic systems with discontinuous coefficients

1. 

School of Mathematics and Statistics, Shandong Normal University, Jinan, Shandong, 250358, China

2. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China

* Corresponding author

Received  November 2018 Revised  November 2018 Published  May 2019

Fund Project: The second author is supported by the National Natural Science Foundation of China Grant 11671414

In this paper we study subquadratic elliptic systems in divergence form with VMO leading coefficients in $ \mathbb{R}^{n} $. We establish pointwise estimates for gradients of local weak solutions to the system by involving the sharp maximal operator. As a consequence, the nonlinear Calderón-Zygmund gradient estimates for $ L^{q} $ and BMO norms are derived.

Citation: Feng Zhou, Zhenqiu Zhang. Pointwise gradient estimates for subquadratic elliptic systems with discontinuous coefficients. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3137-3160. doi: 10.3934/cpaa.2019141
References:
[1]

L. Beck, Boundary Regularity Results for Local Weak Solutions of Subquadratic Elliptic Systems, Ph.D thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2008.

[2]

D. BreitA. CianchiL. DieningT. Kuusi and S. Schwarzacher, Pointwise Calderón-Zygmund gradient estimates for the $p$-Laplace system, Journal de Mathématiques Pures et Appliquées, 114 (2018), 146-190. doi: 10.1016/j.matpur.2017.07.011.

[3]

D. BreitA. CianchiL. DieningT. Kuusi and S. Schwarzacher, The $p$-Laplace system with right-hand side in divergence form: Inner and up to the boundary pointwise estimates, Nonlinear Analysis: Theory, Methods and Applications, 153 (2017), 200-212. doi: 10.1016/j.na.2016.06.011.

[4]

L. Caffarelli and I. Peral, On $W^{1, p}$ estimates for elliptic equations in divergence form, Communications on Pure and Applied Mathematics, 51 (1998), 1-21. doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G.

[5]

A. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Mathematica, 88 (1952), 85-139. doi: 10.1007/BF02392130.

[6]

E. DiBenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, American Journal of Mathematics, 115 (1993), 1107-1134. doi: 10.2307/2375066.

[7]

L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth, Forum Mathematicum, 20 (2008), 523-556. doi: 10.1515/FORUM.2008.027.

[8]

L. DieningP. Kaplický and S. Schwarzacher, BMO estimates for the $p$-Laplacian, Nonlinear Analysis, 75 (2012), 637-650. doi: 10.1016/j.na.2011.08.065.

[9]

L. DieningB. Stroffolini and A. Verde, Everywhere regularity of functionals with $\varphi$-growth, Manuscripta Mathematica, 129 (2009), 449-481. doi: 10.1007/s00229-009-0277-0.

[10]

F. Duzaar and G. Mingione, Gradient estimates via non-linear potentials, American Journal of Mathematics, 133 (2011), 1093-1149. doi: 10.1353/ajm.2011.0023.

[11]

M. Giaquinta and L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, 2nd edition, Scuola Normale Superiore di Pisa, 2012. doi: 10.1007/978-88-7642-443-4.

[12]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co. Pte. Ltd., Singapore, 2003. doi: 10.1142/5002.

[13]

T. Iwaniec, Projections onto gradient fields and $L^{p}$-estimates for degenerated elliptic operators, Studia Mathematica, 75 (1983), 293-312. doi: 10.4064/sm-75-3-293-312.

[14]

T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Mathematica, 172 (1994), 137-161. doi: 10.1007/BF02392793.

[15]

T. Kuusi and G. Mingione, Linear potentials in nonlinear potential theory, Archive for Rational Mechanics and Analysis, 207 (2013), 215-246. doi: 10.1007/s00205-012-0562-z.

[16]

T. Kuusi and G. Mingione, A nonlinear Stein theorem, Calculus of Variations and Partial Differential Equations, 51 (2014), 45-86. doi: 10.1007/s00526-013-0666-9.

[17]

G. Mingione, Gradient potential estimates, Journal of the European Mathematical Society, 13 (2011), 459-486. doi: 10.4171/JEMS/258.

[18]

S. Schwarzacher, Hölder-Zygmund estimates for degenerate parabolic systems, Journal of Differential Equations, 256 (2014), 2423-2448. doi: 10.1016/j.jde.2014.01.009.

show all references

References:
[1]

L. Beck, Boundary Regularity Results for Local Weak Solutions of Subquadratic Elliptic Systems, Ph.D thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2008.

[2]

D. BreitA. CianchiL. DieningT. Kuusi and S. Schwarzacher, Pointwise Calderón-Zygmund gradient estimates for the $p$-Laplace system, Journal de Mathématiques Pures et Appliquées, 114 (2018), 146-190. doi: 10.1016/j.matpur.2017.07.011.

[3]

D. BreitA. CianchiL. DieningT. Kuusi and S. Schwarzacher, The $p$-Laplace system with right-hand side in divergence form: Inner and up to the boundary pointwise estimates, Nonlinear Analysis: Theory, Methods and Applications, 153 (2017), 200-212. doi: 10.1016/j.na.2016.06.011.

[4]

L. Caffarelli and I. Peral, On $W^{1, p}$ estimates for elliptic equations in divergence form, Communications on Pure and Applied Mathematics, 51 (1998), 1-21. doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G.

[5]

A. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Mathematica, 88 (1952), 85-139. doi: 10.1007/BF02392130.

[6]

E. DiBenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, American Journal of Mathematics, 115 (1993), 1107-1134. doi: 10.2307/2375066.

[7]

L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth, Forum Mathematicum, 20 (2008), 523-556. doi: 10.1515/FORUM.2008.027.

[8]

L. DieningP. Kaplický and S. Schwarzacher, BMO estimates for the $p$-Laplacian, Nonlinear Analysis, 75 (2012), 637-650. doi: 10.1016/j.na.2011.08.065.

[9]

L. DieningB. Stroffolini and A. Verde, Everywhere regularity of functionals with $\varphi$-growth, Manuscripta Mathematica, 129 (2009), 449-481. doi: 10.1007/s00229-009-0277-0.

[10]

F. Duzaar and G. Mingione, Gradient estimates via non-linear potentials, American Journal of Mathematics, 133 (2011), 1093-1149. doi: 10.1353/ajm.2011.0023.

[11]

M. Giaquinta and L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, 2nd edition, Scuola Normale Superiore di Pisa, 2012. doi: 10.1007/978-88-7642-443-4.

[12]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co. Pte. Ltd., Singapore, 2003. doi: 10.1142/5002.

[13]

T. Iwaniec, Projections onto gradient fields and $L^{p}$-estimates for degenerated elliptic operators, Studia Mathematica, 75 (1983), 293-312. doi: 10.4064/sm-75-3-293-312.

[14]

T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Mathematica, 172 (1994), 137-161. doi: 10.1007/BF02392793.

[15]

T. Kuusi and G. Mingione, Linear potentials in nonlinear potential theory, Archive for Rational Mechanics and Analysis, 207 (2013), 215-246. doi: 10.1007/s00205-012-0562-z.

[16]

T. Kuusi and G. Mingione, A nonlinear Stein theorem, Calculus of Variations and Partial Differential Equations, 51 (2014), 45-86. doi: 10.1007/s00526-013-0666-9.

[17]

G. Mingione, Gradient potential estimates, Journal of the European Mathematical Society, 13 (2011), 459-486. doi: 10.4171/JEMS/258.

[18]

S. Schwarzacher, Hölder-Zygmund estimates for degenerate parabolic systems, Journal of Differential Equations, 256 (2014), 2423-2448. doi: 10.1016/j.jde.2014.01.009.

[1]

Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091

[2]

Marius Ionescu, Luke G. Rogers. Complex Powers of the Laplacian on Affine Nested Fractals as Calderón-Zygmund operators. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2155-2175. doi: 10.3934/cpaa.2014.13.2155

[3]

Liangjun Weng. The interior gradient estimate for some nonlinear curvature equations. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1601-1612. doi: 10.3934/cpaa.2019076

[4]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[5]

Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46

[6]

Sachiko Ishida, Yusuke Maeda, Tomomi Yokota. Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2537-2568. doi: 10.3934/dcdsb.2013.18.2537

[7]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[8]

Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961

[9]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[10]

Wei Sun. On uniform estimate of complex elliptic equations on closed Hermitian manifolds. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1553-1570. doi: 10.3934/cpaa.2017074

[11]

Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic & Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883

[12]

Shuang Liang, Shenzhou Zheng. Variable lorentz estimate for stationary stokes system with partially BMO coefficients. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2879-2903. doi: 10.3934/cpaa.2019129

[13]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[14]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

[15]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[16]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[17]

Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems & Imaging, 2017, 11 (3) : 553-575. doi: 10.3934/ipi.2017026

[18]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[19]

Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems & Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991

[20]

Messoud Efendiev, Etsushi Nakaguchi, Wolfgang L. Wendland. Uniform estimate of dimension of the global attractor for a semi-discretized chemotaxis-growth system. Conference Publications, 2007, 2007 (Special) : 334-343. doi: 10.3934/proc.2007.2007.334

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (19)
  • HTML views (91)
  • Cited by (0)

Other articles
by authors

[Back to Top]