• Previous Article
    Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines
  • CPAA Home
  • This Issue
  • Next Article
    Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model
September 2019, 18(5): 2299-2324. doi: 10.3934/cpaa.2019104

Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent

1. 

School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China

2. 

College of Mathematics and Information Sciences, Xin-Yang Normal University, Xinyang, 464000, China

* Corresponding author

Received  October 2017 Revised  October 2017 Published  April 2019

Fund Project: The research is supported by National Natural Science Foundation of China (No.11471267)

In this paper, we study the modified Schr
$ \ddot{\mbox{o}} $
dinger-Poisson system:
$ \begin{align*} \begin{cases} -\Delta u+V(x)u-K(x)\phi|u|^8u-\Delta(u^2)u = g(x,u),\ \ \ \ &\mbox{in}\ \mathbb{R}^3,\\ -\Delta\phi = K(x)|u|^{10},\ \ \ \ &\mbox{in}\ \mathbb{R}^3, \end{cases} \end{align*} $
where
$ V,K,g $
are asymptotically periodic functions of
$ x $
. Based on variational methods and the dual approach, we prove the existence of ground state solution by using the Nehari manifold method, the Mountain Pass theorem and the concentration-compactness principle.
Citation: Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104
References:
[1]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schr$\ddot{\mbox o}$dinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. doi: 10.1016/j.jmaa.2008.03.057.

[2]

C. O. AlvesM. A. S. Souto and S. H. M. Soares, Schr$\ddot{\mbox o}$dinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 377 (2011), 584-592. doi: 10.1016/j.jmaa.2010.11.031.

[3]

G. Bao, Infinitely many small solutions for a sublinear Schr$\ddot{\mbox o}$dinger-Poisson system with sign-changing potential, Comput. Math. Appl., 71 (2016), 2082-2088. doi: 10.1016/j.camwa.2016.04.006.

[4]

V. Benci and D. Fortunato, An eigenvalue problem for the Schr$\ddot{\mbox o}$dinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293. doi: 10.12775/TMNA.1998.019.

[5]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405.

[6]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schr$\ddot{\mbox o}$dinger equation: a dual approach, Nonlinear Anal., 56 (2004), 213-226. doi: 10.1016/j.na.2003.09.008.

[7]

S.-J. Chen and C.-L. Tang, High energy solutions for the superlinear Schr$\ddot{\mbox o}$dinger-Maxwell equations, Nonlinear Anal., 71 (2009), 4927-4934. doi: 10.1016/j.na.2009.03.050.

[8]

G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schr$\ddot{\mbox o}$dinger-Poisson systems, J. Differential Equations, 248 (2010), 521-543. doi: 10.1016/j.jde.2009.06.017.

[9]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schr$\ddot{\mbox o}$dinger-Maxwell equations, Proc. Roy. Soc. Edinb. Set. A, 134 (2004), 893-906. doi: 10.1017/S030821050000353X.

[10]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322. doi: 10.1515/ans-2004-0305.

[11]

X. Feng and Y. Zhang, Existence of non-trivial solution for a class of modified Schr$\ddot{\mbox o}$dinger-Poisson equations via perturbation method, J. Math. Anal. Appl., 442 (2016), 637-684. doi: 10.1016/j.jmaa.2016.05.002.

[12]

Y.-P. GaoS.-L. Yu and C.-L. Tang, Positive ground state solutions to Schr$\ddot{\mbox o}$dinger-Poisson systems with a negative non-local term, E. J. Differential Equations, 118 (2015), 1-11.

[13]

R. W. Hasse, A general method for the solution of nonlinear soliton and Kink Schr$\ddot{\mbox o}$dinger equations, Z. Phys. B., 37 (1980), 83-87. doi: 10.1007/BF01325508.

[14]

L. R. HuangE. M. Rocha and J. Q. Chen, On the Schr$\ddot{\mbox o}$dinger-Poisson system with a general indefinite nonlinearity, Nonlinear Anal. Real World Appl., 28 (2016), 1-19. doi: 10.1016/j.nonrwa.2015.09.001.

[15]

H. Liu, Positive solutions of an asymptotically periodic Schr$\ddot{\mbox o}$dinger-Poisson system with critical exponent, Nonlinear Anal. Real World Appl., 32 (2016), 198-212. doi: 10.1016/j.nonrwa.2016.04.007.

[16]

H. Liu and H. Chen, Multiple solutions for a nonlinear Schr$\ddot{\mbox o}$dinger-Poisson system with sign-changing potential, Comput. Math. Appl., 71 (2016), 1405-1416. doi: 10.1016/j.camwa.2016.02.010.

[17]

W. Liu and L. Gan, Existence of solutions for modified Schr$\ddot{\mbox o}$dinger-Poisson system with critical nonlinearity in $\mathbb{R}^3$, Taiwan. J. Math., 20 (2016), 411-429. doi: 10.11650/tjm.20.2016.6144.

[18]

Z. Liu and Y. Huang, Multiple solutions of asymptotically linear Schr$\ddot{\mbox o}$dinger-Poisson system with radial potentials vanishing at infinity, J. Math. Anal. Appl., 411 (2014), 693-706. doi: 10.1016/j.jmaa.2013.10.023.

[19]

J. LiuJ.-F. Liao and C.-L. Tang, A positive ground state solution for a class of asymptotically periodic Schr$\ddot{\mbox o}$dinger equations, Comput. Math. Appl., 71 (2016), 965-976. doi: 10.1016/j.camwa.2016.01.004.

[20]

F.-Y. Li, Y.-H. Li and J.-P. Shi, Existence of positive solutions to Schr$\ddot{\mbox o}$dinger-Poisson type systems with critical exponent, Commun. Contempt. Math., 16 (2014), 1450036. doi: 10.1142/S0219199714500369.

[21]

X. LiuJ. Liu and Z.-Q. W, Ground states for quasilinear Schr$\ddot{\mbox o}$dinger equations with critical growth, Calc. Var. Partial Differ. Equ., 46 (2013), 641-669. doi: 10.1007/s00526-012-0497-0.

[22]

H. F. Lins and E. A. B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 71 (2009), 2890-2905. doi: 10.1016/j.na.2009.01.171.

[23]

M.-M. Li and C.-L. Tang, Multiple positive solutions for Schr$\ddot{\mbox o}$dinger-Poisson system in $\mathbb{R}^3$ involving concave-convex nonlinearities with critical exponent, Commun. Pure Appl. Anal., 16 (2017), 1587-1602. doi: 10.3934/cpaa.2017076.

[24]

J.-Q. LiuY.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schr$\ddot{\mbox o}$dinger equations, Ⅱ, J. Differential Equations, 187 (2003), 473-793. doi: 10.1016/S0022-0396(02)00064-5.

[25]

Z. LiuZ.-Q. Wang and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schr$\ddot{\mbox o}$dinger-Poisson system, Ann. Mat. Pur. Appl., 195 (2016), 775-794. doi: 10.1007/s10231-015-0489-8.

[26]

F. Li and Q. Zhang, Existence of positive solutions to the Schr$\ddot{\mbox o}$dinger-Poisson system without compactness conditions, J. Math. Anal. Appl., 401 (2013), 754-762. doi: 10.1016/j.jmaa.2013.01.002.

[27]

C. Mercuri, Positive solutions of nonlinear Schr$\ddot{\mbox o}$dinger-Poisson systems with radial potential vanishing at infinity, Rend. Lincei Mat. Appl., 19 (2008), 211-227. doi: 10.4171/RLM/520.

[28]

J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for a class of modified Schr$\ddot{\mbox o}$dinger-Poisson systems, J. Math. Anal. Appl., 408 (2013), 713-724. doi: 10.1016/j.jmaa.2013.06.011.

[29]

D. Ruiz, The Schr$\ddot{\mbox o}$dinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. doi: 10.1016/j.jfa.2006.04.005.

[30]

J. Sun, Infinitely many solutions for a class of sublinear Schr$\ddot{\mbox o}$dinger-Maxwell equations, J. Math. Anal. Appl., 390 (2012), 514-522. doi: 10.1016/j.jmaa.2012.01.057.

[31]

J. Sun and S. Ma, Ground state solutions for some Schr$\ddot{\mbox o}$dinger-Poisson systems with periodic potentials, J. Differential Equations, 260 (2016), 2119-2149. doi: 10.1016/j.jde.2015.09.057.

[32]

E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schr$\ddot{\mbox o}$dinger equations with critical growth, Calc. Var. Partial Differ. Equ., 39 (2010), 1-33. doi: 10.1007/s00526-009-0299-1.

[33]

E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schr$\ddot{\mbox o}$dinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935-2949. doi: 10.1016/j.na.2009.11.037.

[34]

G. Vaira, Ground states for Schr$\ddot{\mbox o}$dinger-Poisson type systems, Ric. Mat., 60 (2011), 263-297. doi: 10.1007/s11587-011-0109-x.

[35]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996., Basel (1996). doi: 10.1007/978-1-4612-4146-1.

[36]

M.-H. Yang and Z.-Q. Han, Existence and multiplicity results for the nonlinear Schr$\ddot{\mbox o}$dinger-Poisson systems, Nonlinear Anal. Real World Appl., 13 (2012), 1093-1101. doi: 10.1016/j.nonrwa.2011.07.008.

[37]

Y. Ye and C.-L. Tang, Existence and multiplicity of solutions for Schr$\ddot{\mbox o}$dinger-Poisson equations with sign-changing potential, Calc. Var. Partial Differ. Equ., 53 (2015), 383-411. doi: 10.1007/s00526-014-0753-6.

[38]

L. ZhaoH. Liu and F. Zhao, Existence and concentration of solutions for the Schr$\ddot{\mbox o}$dinger-Poisson equations with steep well potential, J. Differential Equations, 255 (2013), 1-23. doi: 10.1016/j.jde.2013.03.005.

[39]

L. Zhao and F. Zhao, On the existence of solutions for the Schr$\ddot{\mbox o}$dinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169. doi: 10.1016/j.jmaa.2008.04.053.

show all references

References:
[1]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schr$\ddot{\mbox o}$dinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. doi: 10.1016/j.jmaa.2008.03.057.

[2]

C. O. AlvesM. A. S. Souto and S. H. M. Soares, Schr$\ddot{\mbox o}$dinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 377 (2011), 584-592. doi: 10.1016/j.jmaa.2010.11.031.

[3]

G. Bao, Infinitely many small solutions for a sublinear Schr$\ddot{\mbox o}$dinger-Poisson system with sign-changing potential, Comput. Math. Appl., 71 (2016), 2082-2088. doi: 10.1016/j.camwa.2016.04.006.

[4]

V. Benci and D. Fortunato, An eigenvalue problem for the Schr$\ddot{\mbox o}$dinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293. doi: 10.12775/TMNA.1998.019.

[5]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405.

[6]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schr$\ddot{\mbox o}$dinger equation: a dual approach, Nonlinear Anal., 56 (2004), 213-226. doi: 10.1016/j.na.2003.09.008.

[7]

S.-J. Chen and C.-L. Tang, High energy solutions for the superlinear Schr$\ddot{\mbox o}$dinger-Maxwell equations, Nonlinear Anal., 71 (2009), 4927-4934. doi: 10.1016/j.na.2009.03.050.

[8]

G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schr$\ddot{\mbox o}$dinger-Poisson systems, J. Differential Equations, 248 (2010), 521-543. doi: 10.1016/j.jde.2009.06.017.

[9]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schr$\ddot{\mbox o}$dinger-Maxwell equations, Proc. Roy. Soc. Edinb. Set. A, 134 (2004), 893-906. doi: 10.1017/S030821050000353X.

[10]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322. doi: 10.1515/ans-2004-0305.

[11]

X. Feng and Y. Zhang, Existence of non-trivial solution for a class of modified Schr$\ddot{\mbox o}$dinger-Poisson equations via perturbation method, J. Math. Anal. Appl., 442 (2016), 637-684. doi: 10.1016/j.jmaa.2016.05.002.

[12]

Y.-P. GaoS.-L. Yu and C.-L. Tang, Positive ground state solutions to Schr$\ddot{\mbox o}$dinger-Poisson systems with a negative non-local term, E. J. Differential Equations, 118 (2015), 1-11.

[13]

R. W. Hasse, A general method for the solution of nonlinear soliton and Kink Schr$\ddot{\mbox o}$dinger equations, Z. Phys. B., 37 (1980), 83-87. doi: 10.1007/BF01325508.

[14]

L. R. HuangE. M. Rocha and J. Q. Chen, On the Schr$\ddot{\mbox o}$dinger-Poisson system with a general indefinite nonlinearity, Nonlinear Anal. Real World Appl., 28 (2016), 1-19. doi: 10.1016/j.nonrwa.2015.09.001.

[15]

H. Liu, Positive solutions of an asymptotically periodic Schr$\ddot{\mbox o}$dinger-Poisson system with critical exponent, Nonlinear Anal. Real World Appl., 32 (2016), 198-212. doi: 10.1016/j.nonrwa.2016.04.007.

[16]

H. Liu and H. Chen, Multiple solutions for a nonlinear Schr$\ddot{\mbox o}$dinger-Poisson system with sign-changing potential, Comput. Math. Appl., 71 (2016), 1405-1416. doi: 10.1016/j.camwa.2016.02.010.

[17]

W. Liu and L. Gan, Existence of solutions for modified Schr$\ddot{\mbox o}$dinger-Poisson system with critical nonlinearity in $\mathbb{R}^3$, Taiwan. J. Math., 20 (2016), 411-429. doi: 10.11650/tjm.20.2016.6144.

[18]

Z. Liu and Y. Huang, Multiple solutions of asymptotically linear Schr$\ddot{\mbox o}$dinger-Poisson system with radial potentials vanishing at infinity, J. Math. Anal. Appl., 411 (2014), 693-706. doi: 10.1016/j.jmaa.2013.10.023.

[19]

J. LiuJ.-F. Liao and C.-L. Tang, A positive ground state solution for a class of asymptotically periodic Schr$\ddot{\mbox o}$dinger equations, Comput. Math. Appl., 71 (2016), 965-976. doi: 10.1016/j.camwa.2016.01.004.

[20]

F.-Y. Li, Y.-H. Li and J.-P. Shi, Existence of positive solutions to Schr$\ddot{\mbox o}$dinger-Poisson type systems with critical exponent, Commun. Contempt. Math., 16 (2014), 1450036. doi: 10.1142/S0219199714500369.

[21]

X. LiuJ. Liu and Z.-Q. W, Ground states for quasilinear Schr$\ddot{\mbox o}$dinger equations with critical growth, Calc. Var. Partial Differ. Equ., 46 (2013), 641-669. doi: 10.1007/s00526-012-0497-0.

[22]

H. F. Lins and E. A. B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 71 (2009), 2890-2905. doi: 10.1016/j.na.2009.01.171.

[23]

M.-M. Li and C.-L. Tang, Multiple positive solutions for Schr$\ddot{\mbox o}$dinger-Poisson system in $\mathbb{R}^3$ involving concave-convex nonlinearities with critical exponent, Commun. Pure Appl. Anal., 16 (2017), 1587-1602. doi: 10.3934/cpaa.2017076.

[24]

J.-Q. LiuY.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schr$\ddot{\mbox o}$dinger equations, Ⅱ, J. Differential Equations, 187 (2003), 473-793. doi: 10.1016/S0022-0396(02)00064-5.

[25]

Z. LiuZ.-Q. Wang and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schr$\ddot{\mbox o}$dinger-Poisson system, Ann. Mat. Pur. Appl., 195 (2016), 775-794. doi: 10.1007/s10231-015-0489-8.

[26]

F. Li and Q. Zhang, Existence of positive solutions to the Schr$\ddot{\mbox o}$dinger-Poisson system without compactness conditions, J. Math. Anal. Appl., 401 (2013), 754-762. doi: 10.1016/j.jmaa.2013.01.002.

[27]

C. Mercuri, Positive solutions of nonlinear Schr$\ddot{\mbox o}$dinger-Poisson systems with radial potential vanishing at infinity, Rend. Lincei Mat. Appl., 19 (2008), 211-227. doi: 10.4171/RLM/520.

[28]

J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for a class of modified Schr$\ddot{\mbox o}$dinger-Poisson systems, J. Math. Anal. Appl., 408 (2013), 713-724. doi: 10.1016/j.jmaa.2013.06.011.

[29]

D. Ruiz, The Schr$\ddot{\mbox o}$dinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. doi: 10.1016/j.jfa.2006.04.005.

[30]

J. Sun, Infinitely many solutions for a class of sublinear Schr$\ddot{\mbox o}$dinger-Maxwell equations, J. Math. Anal. Appl., 390 (2012), 514-522. doi: 10.1016/j.jmaa.2012.01.057.

[31]

J. Sun and S. Ma, Ground state solutions for some Schr$\ddot{\mbox o}$dinger-Poisson systems with periodic potentials, J. Differential Equations, 260 (2016), 2119-2149. doi: 10.1016/j.jde.2015.09.057.

[32]

E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schr$\ddot{\mbox o}$dinger equations with critical growth, Calc. Var. Partial Differ. Equ., 39 (2010), 1-33. doi: 10.1007/s00526-009-0299-1.

[33]

E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schr$\ddot{\mbox o}$dinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935-2949. doi: 10.1016/j.na.2009.11.037.

[34]

G. Vaira, Ground states for Schr$\ddot{\mbox o}$dinger-Poisson type systems, Ric. Mat., 60 (2011), 263-297. doi: 10.1007/s11587-011-0109-x.

[35]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996., Basel (1996). doi: 10.1007/978-1-4612-4146-1.

[36]

M.-H. Yang and Z.-Q. Han, Existence and multiplicity results for the nonlinear Schr$\ddot{\mbox o}$dinger-Poisson systems, Nonlinear Anal. Real World Appl., 13 (2012), 1093-1101. doi: 10.1016/j.nonrwa.2011.07.008.

[37]

Y. Ye and C.-L. Tang, Existence and multiplicity of solutions for Schr$\ddot{\mbox o}$dinger-Poisson equations with sign-changing potential, Calc. Var. Partial Differ. Equ., 53 (2015), 383-411. doi: 10.1007/s00526-014-0753-6.

[38]

L. ZhaoH. Liu and F. Zhao, Existence and concentration of solutions for the Schr$\ddot{\mbox o}$dinger-Poisson equations with steep well potential, J. Differential Equations, 255 (2013), 1-23. doi: 10.1016/j.jde.2013.03.005.

[39]

L. Zhao and F. Zhao, On the existence of solutions for the Schr$\ddot{\mbox o}$dinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169. doi: 10.1016/j.jmaa.2008.04.053.

[1]

Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214

[2]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[3]

Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2018329

[4]

Yanfang Xue, Chunlei Tang. Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1121-1145. doi: 10.3934/cpaa.2018054

[5]

Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079

[6]

Yi He, Lu Lu, Wei Shuai. Concentrating ground-state solutions for a class of Schödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents. Communications on Pure & Applied Analysis, 2016, 15 (1) : 103-125. doi: 10.3934/cpaa.2016.15.103

[7]

Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809

[8]

Chunhua Wang, Jing Yang. Positive solutions for a nonlinear Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5461-5504. doi: 10.3934/dcds.2018241

[9]

Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076

[10]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[11]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[12]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[13]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[14]

Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure & Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867

[15]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[16]

Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

[17]

Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427

[18]

Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411

[19]

Claudianor O. Alves, Minbo Yang. Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5881-5910. doi: 10.3934/dcds.2016058

[20]

Qiangchang Ju, Fucai Li, Hailiang Li. Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data. Kinetic & Related Models, 2011, 4 (3) : 767-783. doi: 10.3934/krm.2011.4.767

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (37)
  • HTML views (92)
  • Cited by (0)

Other articles
by authors

[Back to Top]