• Previous Article
    Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $
  • CPAA Home
  • This Issue
  • Next Article
    Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system
July 2019, 18(4): 2047-2067. doi: 10.3934/cpaa.2019092

A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production

1. 

College of Science, Donghua University, Shanghai 200051, China

2. 

Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany

Received  September 2018 Revised  November 2018 Published  January 2019

Fund Project: Y. Tao acknowledges support of the National Natural Science Foundation of China (No. 11571070). M. Winkler was supported by the Deutsche Forschungsgemeinschaft within the project Analysis of chemotactic cross-diffusion in complex frameworks

We consider the chemotaxis-haptotaxis system
$ \begin{eqnarray*} \left\{ \begin{array}{l} u_t = \Delta u - \chi \nabla \cdot (u\nabla v) - \xi \nabla \cdot (u\nabla w) + \mu u(1-u-w), \\ v_t = \Delta v-v+f(u), \\ w_t = -vw+\eta w(1-u-w), \end{array} \right. \end{eqnarray*} $
in a bounded convex domain
$ \Omega\subset \mathbb{R} ^n $
with smooth boundary, where
$ \chi, \xi, \mu $
and
$ \eta $
are positive constants, and where
$ f \in C^1([0,\infty)) $
is a given function fulfilling
$ f(0) \ge 0 $
and
$ \begin{eqnarray*} f(s) \le K_f (s+1)^\alpha \qquad \mbox{for all } s\ge 0 \end{eqnarray*} $
with some
$ K_f >0 $
and
$ \alpha>0 $
.
It is asserted that whenever
$ \begin{eqnarray*} \alpha < \left\{ \begin{array}{ll} \frac{3}{2} \qquad & \mbox{if } n = 1, \\ \frac{n+6}{2(n+2)} \qquad & \mbox{if } n\ge 2, \end{array} \right. \end{eqnarray*} $
the Neumann boundary problem with suitably regular initial data possesses a unique global and bounded classical solution.
Citation: Youshan Tao, Michael Winkler. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2047-2067. doi: 10.3934/cpaa.2019092
References:
[1]

N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. doi: 10.1142/S021820251550044X.

[2]

X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis system, Z. Angew. Math. Phys., 67 (2016), 11. doi: 10.1007/s00033-015-0601-3.

[3]

Z. Chen and Y. Tao, Large-data solution in a three-dimensional chemotaxis-haptotaxis system with remodeling of non-diffusible attractant: The role of sub-linear production of diffusible signal, Acta Appl Math, (2018). doi: 10.1007/s10440-018-0216-8.

[4]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system, Math. Mod. Meth. Appl. Sci., 18 (2005), 1685–1734. doi: 10.1142/S0218202505000947.

[5]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Net. Hetero. Med., 1 (2006), 399–439. doi: 10.3934/nhm.2006.1.399.

[6]

M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330–1355. doi: 10.1137/S0036141001385046.

[7]

A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138–163. doi: 10.1016/S0022-247X(02)00147-6.

[8]

Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), 72–94. doi: 10.1016/0022-1236(91)90136-S.

[9]

M. Hieber and J. Prüss, Heat kernels and maximal $L^p$-$L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647–1669. doi: 10.1080/03605309708821314.

[10]

T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Mod. Meth. Appl. Sci., 23 (2013), 165–198. doi: 10.1142/S0218202512500480.

[11]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Eq., 215 (2005), 52–107. doi: 10.1016/j.jde.2004.10.022.

[12]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc. Transl., 23 (1968), Providence, RI.

[13]

Y. Li and J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29 (2016), 1564–1595. doi: 10.1088/0951-7715/29/5/1564.

[14]

P. L. Lions, Résolution de problémes elliptiques quasilinéaires, Arch. Rat. Mech. Anal., 74 (1980), 335–353. doi: 10.1007/BF00249679.

[15]

P. Y. H. Pang and Y. Wang, Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Eq., 263 (2017), 1269–1292. doi: 10.1016/j.jde.2017.03.016.

[16]

P. Y. H. Pang and Y. Wang, Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling, Math. Mod. Meth. Appl. Sci., 28 (2018), 2211–2235. doi: 10.1142/S0218202518400134.

[17]

C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969–2007. doi: 10.1137/13094058X.

[18]

Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009), 60–69. doi: 10.1016/j.jmaa.2008.12.039.

[19]

Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system, arXiv: 1407.7382v1.

[20]

Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), 1533–1558. doi: 10.1137/090751542.

[21]

Y. Tao and M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model, Proc. Roy. Soc. Edinb. Sect A, 144 (2014), 1067–1084. doi: 10.1017/S0308210512000571.

[22]

Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225–1239. doi: 10.1088/0951-7715/27/6/1225.

[23]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Eq., 257 (2014), 784–815. doi: 10.1016/j.jde.2014.04.014.

[24]

Y. Tao and M. Winkler, Large time behavior in a mutidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229–4250. doi: 10.1137/15M1014115.

[25]

C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007), 1694–1713. doi: 10.1137/060655122.

[26]

L. Wang, C. Mu, X. Hu and Y. Tian, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Math. Meth. Appl. Sci., 40 (2017), 3000–3016. doi: 10.1002/mma.4216.

[27]

Y. Wang and Y. Ke, Large time behavior of solution to a fully parabolic chemotaxis-haptotaxis model in higher dimensions, J. Differential Equations, 260 (2016), 6960–6988. doi: 10.1016/j.jde.2016.01.017.

[28]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Eq., 248 (2010), 2889–2905. doi: 10.1016/j.jde.2010.02.008.

[29]

M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differential Eq., 264 (2018), 6109–6151. doi: 10.1016/j.jde.2018.01.027.

[30]

M. Winkler, A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization, Preprint.

[31]

J. Zheng, Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Discr. Cont. Dyn. Syst., 37 (2017), 627–643. doi: 10.3934/dcds.2017026.

show all references

References:
[1]

N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. doi: 10.1142/S021820251550044X.

[2]

X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis system, Z. Angew. Math. Phys., 67 (2016), 11. doi: 10.1007/s00033-015-0601-3.

[3]

Z. Chen and Y. Tao, Large-data solution in a three-dimensional chemotaxis-haptotaxis system with remodeling of non-diffusible attractant: The role of sub-linear production of diffusible signal, Acta Appl Math, (2018). doi: 10.1007/s10440-018-0216-8.

[4]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system, Math. Mod. Meth. Appl. Sci., 18 (2005), 1685–1734. doi: 10.1142/S0218202505000947.

[5]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Net. Hetero. Med., 1 (2006), 399–439. doi: 10.3934/nhm.2006.1.399.

[6]

M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330–1355. doi: 10.1137/S0036141001385046.

[7]

A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138–163. doi: 10.1016/S0022-247X(02)00147-6.

[8]

Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), 72–94. doi: 10.1016/0022-1236(91)90136-S.

[9]

M. Hieber and J. Prüss, Heat kernels and maximal $L^p$-$L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647–1669. doi: 10.1080/03605309708821314.

[10]

T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Mod. Meth. Appl. Sci., 23 (2013), 165–198. doi: 10.1142/S0218202512500480.

[11]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Eq., 215 (2005), 52–107. doi: 10.1016/j.jde.2004.10.022.

[12]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc. Transl., 23 (1968), Providence, RI.

[13]

Y. Li and J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29 (2016), 1564–1595. doi: 10.1088/0951-7715/29/5/1564.

[14]

P. L. Lions, Résolution de problémes elliptiques quasilinéaires, Arch. Rat. Mech. Anal., 74 (1980), 335–353. doi: 10.1007/BF00249679.

[15]

P. Y. H. Pang and Y. Wang, Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Eq., 263 (2017), 1269–1292. doi: 10.1016/j.jde.2017.03.016.

[16]

P. Y. H. Pang and Y. Wang, Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling, Math. Mod. Meth. Appl. Sci., 28 (2018), 2211–2235. doi: 10.1142/S0218202518400134.

[17]

C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969–2007. doi: 10.1137/13094058X.

[18]

Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009), 60–69. doi: 10.1016/j.jmaa.2008.12.039.

[19]

Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system, arXiv: 1407.7382v1.

[20]

Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), 1533–1558. doi: 10.1137/090751542.

[21]

Y. Tao and M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model, Proc. Roy. Soc. Edinb. Sect A, 144 (2014), 1067–1084. doi: 10.1017/S0308210512000571.

[22]

Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225–1239. doi: 10.1088/0951-7715/27/6/1225.

[23]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Eq., 257 (2014), 784–815. doi: 10.1016/j.jde.2014.04.014.

[24]

Y. Tao and M. Winkler, Large time behavior in a mutidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229–4250. doi: 10.1137/15M1014115.

[25]

C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007), 1694–1713. doi: 10.1137/060655122.

[26]

L. Wang, C. Mu, X. Hu and Y. Tian, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Math. Meth. Appl. Sci., 40 (2017), 3000–3016. doi: 10.1002/mma.4216.

[27]

Y. Wang and Y. Ke, Large time behavior of solution to a fully parabolic chemotaxis-haptotaxis model in higher dimensions, J. Differential Equations, 260 (2016), 6960–6988. doi: 10.1016/j.jde.2016.01.017.

[28]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Eq., 248 (2010), 2889–2905. doi: 10.1016/j.jde.2010.02.008.

[29]

M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differential Eq., 264 (2018), 6109–6151. doi: 10.1016/j.jde.2018.01.027.

[30]

M. Winkler, A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization, Preprint.

[31]

J. Zheng, Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Discr. Cont. Dyn. Syst., 37 (2017), 627–643. doi: 10.3934/dcds.2017026.

[1]

Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737

[2]

Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035

[3]

Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-20. doi: 10.3934/dcdsb.2018328

[4]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2018324

[5]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[6]

Jiashan Zheng. Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 627-643. doi: 10.3934/dcds.2017026

[7]

Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 211-232. doi: 10.3934/dcdss.2020012

[8]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[9]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189

[10]

Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258

[11]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[12]

Yuanyuan Liu, Youshan Tao. Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 465-475. doi: 10.3934/dcdsb.2017021

[13]

Fuchen Zhang, Xiaofeng Liao, Chunlai Mu, Guangyun Zhang, Yi-An Chen. On global boundedness of the Chen system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1673-1681. doi: 10.3934/dcdsb.2017080

[14]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[15]

Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097

[16]

Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220

[17]

Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463

[18]

Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure & Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97

[19]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[20]

Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168

2017 Impact Factor: 0.884

Article outline

[Back to Top]