• Previous Article
    $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data
  • CPAA Home
  • This Issue
  • Next Article
    A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production
July 2019, 18(4): 2009-2045. doi: 10.3934/cpaa.2019091

Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $

1. 

Universidade Federal de Campina Grande, Unidade Academica de Matematica, CEP: 58429-900, Campina Grande-PB, Brazil

2. 

Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche, 12, 60131 Ancona, Italy

* Corresponding author

Received  September 2018 Revised  September 2018 Published  January 2019

In this work we consider the following class of fractional
$p \& q$
Laplacian problems
$ \begin{equation*} (-\Delta)_{p}^{s}u+ (-\Delta)_{q}^{s}u + V( \varepsilon x) (|u|^{p-2}u + |u|^{q-2}u) = f(u) \mbox{ in } \mathbb{R} ^{N}, \end{equation*} $
where
$ \varepsilon >0 $
is a parameter,
$ s\in (0, 1) $
,
$ 1< p<q<\frac{N}{s} $
,
$ (-\Delta)^{s}_{t} $
, with
$ t\in \{p,q\} $
, is the fractional
$ t $
-Laplacian operator,
$ V: \mathbb{R} ^{N}\rightarrow \mathbb{R} $
is a continuous potential and
$ f: \mathbb{R} \rightarrow \mathbb{R} $
is a
$ \mathcal{C} ^{1} $
-function with subcritical growth. Applying minimax theorems and the Ljusternik-Schnirelmann theory, we investigate the existence, multiplicity and concentration of nontrivial solutions provided that
$ \varepsilon $
is sufficiently small.
Citation: Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091
References:
[1]

C. O. Alves, Existence of positive solutions for a problem with lack of compactness involving the $p$-Laplacian, Nonlinear Anal., 51 (2002), 1187-1206. doi: 10.1016/S0362-546X(01)00887-2.

[2]

C. O. Alves and V. Ambrosio, A multiplicity result for a nonlinear fractional Schrödinger equation in $ \mathbb{R} ^N$ without the Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 466 (2018), 498-522. doi: 10.1016/j.jmaa.2018.06.005.

[3]

C. O. Alves and G. M. Figueiredo, Multiplicity and concentration of positive solutions for a class of quasilinear problems, Adv. Nonlinear Stud., 11 (2011), 265-294. doi: 10.1515/ans-2011-0203.

[4]

C. O. Alves and O. H. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb{R} ^N$ via penalization method, Calc. Var. Partial Differential Equations, 55 (2016), Art. 47, 19 pp. doi: 10.1007/s00526-016-0983-x.

[5]

C. O. Alves and M. T. O. Pimenta, On existence and concentration of solutions to a class of quasilinear problems involving the 1-Laplace operator, Calc. Var. Partial Differential Equations, 56 (2017), Art. 143, 24 pp. doi: 10.1007/s00526-017-1236-3.

[6]

C. O. Alves and C. L. Torres, Existence and concentration of solution for a non-local regional Schrödinger equation with competing potentials, Glasgow Mathematical Journal, to appear.

[7]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.

[8]

V. Ambrosio, Multiple solutions for a fractional $p$-Laplacian equation with sign-changing potential, Electron. J. Diff. Equ., 2016 (2016), 1-12.

[9]

V. Ambrosio, Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method, Ann. Mat. Pura Appl., 196 (2017), 2043-2062. doi: 10.1007/s10231-017-0652-5.

[10]

V. Ambrosio, Concentrating solutions for a class of nonlinear fractional Schrödinger equations in $ \mathbb{R} ^N$, Rev. Mat. Iberoam., arXiv: 1612.02388.

[11]

V. Ambrosio, Fractional $p \& q$ Laplacian problems in $ \mathbb{R} ^N$ with critical growth, Preprint, arXiv: 1801.10449.

[12]

V. Ambrosio, A multiplicity result for a fractional $p$-Laplacian problem without growth conditions, Riv. Math. Univ. Parma (N.S.), 9 (2018), 53-71.

[13]

V. Ambrosio and H. Hajaiej, Multiple solutions for a class of nonhomogeneous fractional Schrödinger equations in $ \mathbb{R} ^N$, J. Dynam. Differential Equations, 30 (2018), 1119-1143. doi: 10.1007/s10884-017-9590-6.

[14]

V. Ambrosio and T. Isernia, Concentration phenomena for a fractional Schrödinger-Kirchhoff type equation, Math. Methods Appl. Sci., 41 (2018), 615-645.

[15]

V. Ambrosio and T. Isernia, Sign-changing solutions for a class of Schrödinger equations with vanishing potentials, Rend. Lincei Mat. Appl., 29 (2018), 127-152. doi: 10.4171/RLM/797.

[16]

V. Ambrosio and T. Isernia, Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional $p$-Laplacian, Discrete Contin. Dyn. Syst., 38 (2018), 5835-5881.

[17]

S. Barile and G. M. Figueiredo, Existence of a least energy nodal solution for a class of $p \& q$-quasilinear elliptic equations, Adv. Nonlinear Stud., 14 (2014), 511-530. doi: 10.1515/ans-2014-0215.

[18]

H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. doi: 10.2307/2044999.

[19]

C. Chen and J. Bao, Existence, nonexistence, and multiplicity of solutions for the fractional $p \& q$-Laplacian equation in $ \mathbb{R} ^N$, Bound. Value Probl., (2016), Paper No. 153, 16 pp. doi: 10.1186/s13661-016-0661-0.

[20]

L. Cherfils and V. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with $p \& q$-Laplacian, Commun. Pure Appl. Anal., 1 (2004), 1-14.

[21]

A. Di CastroT. Kuusi and G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807-1836. doi: 10.1016/j.jfa.2014.05.023.

[22]

A. Di CastroT. Kuusi and G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279-1299. doi: 10.1016/j.anihpc.2015.04.003.

[23]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[24]

S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $ \mathbb{R} ^n$, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 15. Edizioni della Normale, Pisa, 2017.

[25]

I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. doi: 10.1016/0022-247X(74)90025-0.

[26]

P. FelmerA Quass and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Royal Soc. Edinburgh A, 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746.

[27]

G. M. Figueiredo, Existence of positive solutions for a class of $p \& q$ elliptic problems with critical growth on $ \mathbb{R} ^N$, J. Math. Anal. Appl., 378 (2011), 507-518. doi: 10.1016/j.jmaa.2011.02.017.

[28]

G. M. Figueiredo, Existence and multiplicity of solutions for a class of $p \& q$ elliptic problems with critical exponent, Math. Nachr., 286 (2013), 1129-1141. doi: 10.1002/mana.201100237.

[29]

G. M. Figueiredo and G. Siciliano, A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrödinger equation in $ \mathbb{R} ^N$, NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 12, 22 pp. doi: 10.1007/s00030-016-0355-4.

[30]

A. Fiscella and P. Pucci, Kirchhoff-Hardy fractional problems with lack of compactness, Adv. Nonlinear Stud., 17 (2017), 429-456. doi: 10.1515/ans-2017-6021.

[31]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386.

[32]

C. He and G. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing $p \& q$-Laplacians, Ann. Acad. Sci. Fenn. Math., 33 (2008), 337-371.

[33]

A. IannizzottoS. Mosconi and M. Squassina, Global Hölder regularity for the fractional $p$-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1353-1392. doi: 10.4171/RMI/921.

[34]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman- Lazer type problem set on $ \mathbb{R} ^N$, Proc. Roy. Soc. Edinburgh Sect.A, 129 (1999), 787-809. doi: 10.1017/S0308210500013147.

[35]

T. KuusiG. Mingione and Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys., 337 (2015), 1317-1368. doi: 10.1007/s00220-015-2356-2.

[36]

N. Laskin, Fractional quantum mechanics and Lèvy path integrals, Phys. Lett. A, 268 (2000), 298-305. doi: 10.1016/S0375-9601(00)00201-2.

[37]

G. Li and Z. Guo, Multiple solutions for the $p \& q$-Laplacian problem with critical exponent, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 903-918. doi: 10.1016/S0252-9602(09)60089-8.

[38]

G. B. Li and X. Liang, The existence of nontrivial solutions to nonlinear elliptic equation of $p$-$q$-Laplacian type on $ \mathbb{R} ^N$, Nonlinear Anal., 71 (2009), 2316-2334. doi: 10.1016/j.na.2009.01.066.

[39]

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var., 49 (2014), 795-826. doi: 10.1007/s00526-013-0600-1.

[40]

Z. Liu and Z. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Advanced Nonlinear Studies, 4 (2004), 563-574. doi: 10.1515/ans-2004-0411.

[41]

J. Mawhin and G. Molica Bisci, A Brezis-Nirenberg type result for a nonlocal fractional operator, J. Lond. Math. Soc. (2), 95 (2017), 73–93. doi: 10.1112/jlms.12009.

[42]

E. S. Medeiros and K. Perera, Multiplicity of solutions for a quasilinear elliptic problem via the cohomoligical index, Nonlinear Anal., 71 (2009), 3654-3660. doi: 10.1016/j.na.2009.02.013.

[43]

C. Mercuri and M. Willem, A global compactness result for the $p$-Laplacian involving critical nonlinearities, Discrete Contin. Dyn. Syst., 28 (2010), 469-493. doi: 10.3934/dcds.2010.28.469.

[44]

O. Miyagaki and M. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 245 (2008), 3628-3638. doi: 10.1016/j.jde.2008.02.035.

[45]

G. Molica Bisci, V. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, 162, Cambridge, 2016. doi: 10.1017/CBO9781316282397.

[46]

J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13 (1960), 457-468. doi: 10.1002/cpa.3160130308.

[47]

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829. doi: 10.1007/s00526-013-0656-y.

[48]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew Math. Phys., 43 (1992), 270-291. doi: 10.1007/BF00946631.

[49]

M. Schechter and W. Zou, Superlinear problems, Pacific J. Math., 214 (2004), 145-160. doi: 10.2140/pjm.2004.214.145.

[50]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $ \mathbb{R} ^N$, J. Math. Phys., 54 (2013), 031501-17 pages. doi: 10.1063/1.4793990.

[51]

A. Szulkin and T. Weth, The method of Nehari manifold, in Handbook of Non-Convex Analysis and Applications, 597–632, Int. Press, Somerville, MA, (2010).

[52]

C. E. Torres Ledesma, Existence and symmetry result for fractional p-Laplacian in $ \mathbb{R} ^n$, Commun. Pure Appl. Anal., 16 (2017), 99-113. doi: 10.3934/cpaa.2017004.

[53]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

show all references

References:
[1]

C. O. Alves, Existence of positive solutions for a problem with lack of compactness involving the $p$-Laplacian, Nonlinear Anal., 51 (2002), 1187-1206. doi: 10.1016/S0362-546X(01)00887-2.

[2]

C. O. Alves and V. Ambrosio, A multiplicity result for a nonlinear fractional Schrödinger equation in $ \mathbb{R} ^N$ without the Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 466 (2018), 498-522. doi: 10.1016/j.jmaa.2018.06.005.

[3]

C. O. Alves and G. M. Figueiredo, Multiplicity and concentration of positive solutions for a class of quasilinear problems, Adv. Nonlinear Stud., 11 (2011), 265-294. doi: 10.1515/ans-2011-0203.

[4]

C. O. Alves and O. H. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb{R} ^N$ via penalization method, Calc. Var. Partial Differential Equations, 55 (2016), Art. 47, 19 pp. doi: 10.1007/s00526-016-0983-x.

[5]

C. O. Alves and M. T. O. Pimenta, On existence and concentration of solutions to a class of quasilinear problems involving the 1-Laplace operator, Calc. Var. Partial Differential Equations, 56 (2017), Art. 143, 24 pp. doi: 10.1007/s00526-017-1236-3.

[6]

C. O. Alves and C. L. Torres, Existence and concentration of solution for a non-local regional Schrödinger equation with competing potentials, Glasgow Mathematical Journal, to appear.

[7]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.

[8]

V. Ambrosio, Multiple solutions for a fractional $p$-Laplacian equation with sign-changing potential, Electron. J. Diff. Equ., 2016 (2016), 1-12.

[9]

V. Ambrosio, Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method, Ann. Mat. Pura Appl., 196 (2017), 2043-2062. doi: 10.1007/s10231-017-0652-5.

[10]

V. Ambrosio, Concentrating solutions for a class of nonlinear fractional Schrödinger equations in $ \mathbb{R} ^N$, Rev. Mat. Iberoam., arXiv: 1612.02388.

[11]

V. Ambrosio, Fractional $p \& q$ Laplacian problems in $ \mathbb{R} ^N$ with critical growth, Preprint, arXiv: 1801.10449.

[12]

V. Ambrosio, A multiplicity result for a fractional $p$-Laplacian problem without growth conditions, Riv. Math. Univ. Parma (N.S.), 9 (2018), 53-71.

[13]

V. Ambrosio and H. Hajaiej, Multiple solutions for a class of nonhomogeneous fractional Schrödinger equations in $ \mathbb{R} ^N$, J. Dynam. Differential Equations, 30 (2018), 1119-1143. doi: 10.1007/s10884-017-9590-6.

[14]

V. Ambrosio and T. Isernia, Concentration phenomena for a fractional Schrödinger-Kirchhoff type equation, Math. Methods Appl. Sci., 41 (2018), 615-645.

[15]

V. Ambrosio and T. Isernia, Sign-changing solutions for a class of Schrödinger equations with vanishing potentials, Rend. Lincei Mat. Appl., 29 (2018), 127-152. doi: 10.4171/RLM/797.

[16]

V. Ambrosio and T. Isernia, Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional $p$-Laplacian, Discrete Contin. Dyn. Syst., 38 (2018), 5835-5881.

[17]

S. Barile and G. M. Figueiredo, Existence of a least energy nodal solution for a class of $p \& q$-quasilinear elliptic equations, Adv. Nonlinear Stud., 14 (2014), 511-530. doi: 10.1515/ans-2014-0215.

[18]

H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. doi: 10.2307/2044999.

[19]

C. Chen and J. Bao, Existence, nonexistence, and multiplicity of solutions for the fractional $p \& q$-Laplacian equation in $ \mathbb{R} ^N$, Bound. Value Probl., (2016), Paper No. 153, 16 pp. doi: 10.1186/s13661-016-0661-0.

[20]

L. Cherfils and V. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with $p \& q$-Laplacian, Commun. Pure Appl. Anal., 1 (2004), 1-14.

[21]

A. Di CastroT. Kuusi and G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807-1836. doi: 10.1016/j.jfa.2014.05.023.

[22]

A. Di CastroT. Kuusi and G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279-1299. doi: 10.1016/j.anihpc.2015.04.003.

[23]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[24]

S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $ \mathbb{R} ^n$, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 15. Edizioni della Normale, Pisa, 2017.

[25]

I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. doi: 10.1016/0022-247X(74)90025-0.

[26]

P. FelmerA Quass and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Royal Soc. Edinburgh A, 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746.

[27]

G. M. Figueiredo, Existence of positive solutions for a class of $p \& q$ elliptic problems with critical growth on $ \mathbb{R} ^N$, J. Math. Anal. Appl., 378 (2011), 507-518. doi: 10.1016/j.jmaa.2011.02.017.

[28]

G. M. Figueiredo, Existence and multiplicity of solutions for a class of $p \& q$ elliptic problems with critical exponent, Math. Nachr., 286 (2013), 1129-1141. doi: 10.1002/mana.201100237.

[29]

G. M. Figueiredo and G. Siciliano, A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrödinger equation in $ \mathbb{R} ^N$, NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 12, 22 pp. doi: 10.1007/s00030-016-0355-4.

[30]

A. Fiscella and P. Pucci, Kirchhoff-Hardy fractional problems with lack of compactness, Adv. Nonlinear Stud., 17 (2017), 429-456. doi: 10.1515/ans-2017-6021.

[31]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386.

[32]

C. He and G. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing $p \& q$-Laplacians, Ann. Acad. Sci. Fenn. Math., 33 (2008), 337-371.

[33]

A. IannizzottoS. Mosconi and M. Squassina, Global Hölder regularity for the fractional $p$-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1353-1392. doi: 10.4171/RMI/921.

[34]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman- Lazer type problem set on $ \mathbb{R} ^N$, Proc. Roy. Soc. Edinburgh Sect.A, 129 (1999), 787-809. doi: 10.1017/S0308210500013147.

[35]

T. KuusiG. Mingione and Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys., 337 (2015), 1317-1368. doi: 10.1007/s00220-015-2356-2.

[36]

N. Laskin, Fractional quantum mechanics and Lèvy path integrals, Phys. Lett. A, 268 (2000), 298-305. doi: 10.1016/S0375-9601(00)00201-2.

[37]

G. Li and Z. Guo, Multiple solutions for the $p \& q$-Laplacian problem with critical exponent, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 903-918. doi: 10.1016/S0252-9602(09)60089-8.

[38]

G. B. Li and X. Liang, The existence of nontrivial solutions to nonlinear elliptic equation of $p$-$q$-Laplacian type on $ \mathbb{R} ^N$, Nonlinear Anal., 71 (2009), 2316-2334. doi: 10.1016/j.na.2009.01.066.

[39]

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var., 49 (2014), 795-826. doi: 10.1007/s00526-013-0600-1.

[40]

Z. Liu and Z. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Advanced Nonlinear Studies, 4 (2004), 563-574. doi: 10.1515/ans-2004-0411.

[41]

J. Mawhin and G. Molica Bisci, A Brezis-Nirenberg type result for a nonlocal fractional operator, J. Lond. Math. Soc. (2), 95 (2017), 73–93. doi: 10.1112/jlms.12009.

[42]

E. S. Medeiros and K. Perera, Multiplicity of solutions for a quasilinear elliptic problem via the cohomoligical index, Nonlinear Anal., 71 (2009), 3654-3660. doi: 10.1016/j.na.2009.02.013.

[43]

C. Mercuri and M. Willem, A global compactness result for the $p$-Laplacian involving critical nonlinearities, Discrete Contin. Dyn. Syst., 28 (2010), 469-493. doi: 10.3934/dcds.2010.28.469.

[44]

O. Miyagaki and M. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 245 (2008), 3628-3638. doi: 10.1016/j.jde.2008.02.035.

[45]

G. Molica Bisci, V. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, 162, Cambridge, 2016. doi: 10.1017/CBO9781316282397.

[46]

J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13 (1960), 457-468. doi: 10.1002/cpa.3160130308.

[47]

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829. doi: 10.1007/s00526-013-0656-y.

[48]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew Math. Phys., 43 (1992), 270-291. doi: 10.1007/BF00946631.

[49]

M. Schechter and W. Zou, Superlinear problems, Pacific J. Math., 214 (2004), 145-160. doi: 10.2140/pjm.2004.214.145.

[50]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $ \mathbb{R} ^N$, J. Math. Phys., 54 (2013), 031501-17 pages. doi: 10.1063/1.4793990.

[51]

A. Szulkin and T. Weth, The method of Nehari manifold, in Handbook of Non-Convex Analysis and Applications, 597–632, Int. Press, Somerville, MA, (2010).

[52]

C. E. Torres Ledesma, Existence and symmetry result for fractional p-Laplacian in $ \mathbb{R} ^n$, Commun. Pure Appl. Anal., 16 (2017), 99-113. doi: 10.3934/cpaa.2017004.

[53]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

[1]

Shixiong Wang, Longjiang Qu, Chao Li, Huaxiong Wang. Further improvement of factoring $ N = p^r q^s$ with partial known bits. Advances in Mathematics of Communications, 2019, 13 (1) : 121-135. doi: 10.3934/amc.2019007

[2]

Pak Tung Ho. Prescribing the $ Q' $-curvature in three dimension. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2285-2294. doi: 10.3934/dcds.2019096

[3]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

[4]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[5]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[6]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[7]

Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$-brownian motion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1459-1502. doi: 10.3934/dcdsb.2018159

[8]

Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016

[9]

Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011

[10]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[11]

Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster. On the stability of $\vartheta$-methods for stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2695-2708. doi: 10.3934/dcdsb.2018087

[12]

Lianjun Zhang, Lingchen Kong, Yan Li, Shenglong Zhou. A smoothing iterative method for quantile regression with nonconvex $ \ell_p $ penalty. Journal of Industrial & Management Optimization, 2017, 13 (1) : 93-112. doi: 10.3934/jimo.2016006

[13]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[14]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[15]

Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252

[16]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[17]

Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253

[18]

Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085

[19]

Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $ S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007

[20]

Haisheng Tan, Liuyan Liu, Hongyu Liang. Total $\{k\}$-domination in special graphs. Mathematical Foundations of Computing, 2018, 1 (3) : 255-263. doi: 10.3934/mfc.2018011

2017 Impact Factor: 0.884

Article outline

[Back to Top]