July 2019, 18(4): 1769-1782. doi: 10.3934/cpaa.2019083

Global existence for the Boltzmann equation in $ L^r_v L^\infty_t L^\infty_x $ spaces

Independent scholar

Received  June 2018 Revised  June 2018 Published  January 2019

We study the Boltzmann equation near a global Maxwellian. We prove the global existence of a unique mild solution with initial data which belong to the $ L^r_v L^\infty_x $ spaces where $ r \in (1,\infty] $ by using the excess conservation laws and entropy inequality introduced in [5].

Citation: Koya Nishimura. Global existence for the Boltzmann equation in $ L^r_v L^\infty_t L^\infty_x $ spaces. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1769-1782. doi: 10.3934/cpaa.2019083
References:
[1]

R. DuanF. HuangY. Wang and T. Yang, Global well-posedness of the Boltzmann equation with large Amplitude initial data, Arch. Rational Mech. Anal., 225 (2017), 375-424. doi: 10.1007/s00205-017-1107-2.

[2]

Robert T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.

[3]

Yan Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., Vol. LV (2002), 1104-1135. doi: 10.1002/cpa.10040.

[4]

Yan Guo, Decay and continuity of Boltzmann equation in bounded domains, Arch. Rational Mech. Anal., 197 (2010), 713-809. doi: 10.1007/s00205-009-0285-y.

[5]

Yan Guo, Bounded solutions for the Boltzmann equation, Quart. Appl. Math., LXVIII (2010), 143-148. doi: 10.1090/S0033-569X-09-01180-4.

[6]

M. Strain Robert and Keya Zhu, Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$, Kinetic and Related Models, 5 (2012), 383-415. doi: 10.3934/krm.2012.5.383.

[7]

S. Ukai and T. Yang, The Boltzmann equation in the space $L^2 \cap L^\infty_\beta$: Global and time-periodic solutions, Analysis and Applications, 4 (2006), 263-310. doi: 10.1142/S0219530506000784.

show all references

References:
[1]

R. DuanF. HuangY. Wang and T. Yang, Global well-posedness of the Boltzmann equation with large Amplitude initial data, Arch. Rational Mech. Anal., 225 (2017), 375-424. doi: 10.1007/s00205-017-1107-2.

[2]

Robert T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.

[3]

Yan Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., Vol. LV (2002), 1104-1135. doi: 10.1002/cpa.10040.

[4]

Yan Guo, Decay and continuity of Boltzmann equation in bounded domains, Arch. Rational Mech. Anal., 197 (2010), 713-809. doi: 10.1007/s00205-009-0285-y.

[5]

Yan Guo, Bounded solutions for the Boltzmann equation, Quart. Appl. Math., LXVIII (2010), 143-148. doi: 10.1090/S0033-569X-09-01180-4.

[6]

M. Strain Robert and Keya Zhu, Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$, Kinetic and Related Models, 5 (2012), 383-415. doi: 10.3934/krm.2012.5.383.

[7]

S. Ukai and T. Yang, The Boltzmann equation in the space $L^2 \cap L^\infty_\beta$: Global and time-periodic solutions, Analysis and Applications, 4 (2006), 263-310. doi: 10.1142/S0219530506000784.

[1]

Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic & Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020

[2]

Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068

[3]

Radjesvarane Alexandre, Mouhamad Elsafadi. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non Maxwellian molecules. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 1-11. doi: 10.3934/dcds.2009.24.1

[4]

Xinkuan Chai. The Boltzmann equation near Maxwellian in the whole space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 435-458. doi: 10.3934/cpaa.2011.10.435

[5]

Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385

[6]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[7]

Marion Acheritogaray, Pierre Degond, Amic Frouvelle, Jian-Guo Liu. Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinetic & Related Models, 2011, 4 (4) : 901-918. doi: 10.3934/krm.2011.4.901

[8]

Alexander V. Bobylev, Irene M. Gamba. Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules. Kinetic & Related Models, 2017, 10 (3) : 573-585. doi: 10.3934/krm.2017023

[9]

Yoshinori Morimoto. A remark on Cannone-Karch solutions to the homogeneous Boltzmann equation for Maxwellian molecules. Kinetic & Related Models, 2012, 5 (3) : 551-561. doi: 10.3934/krm.2012.5.551

[10]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[11]

Robert M. Strain. Coordinates in the relativistic Boltzmann theory. Kinetic & Related Models, 2011, 4 (1) : 345-359. doi: 10.3934/krm.2011.4.345

[12]

A. V. Bobylev, E. Mossberg. On some properties of linear and linearized Boltzmann collision operators for hard spheres. Kinetic & Related Models, 2008, 1 (4) : 521-555. doi: 10.3934/krm.2008.1.521

[13]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic & Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[14]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic & Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

[15]

Nicolas Fournier. A new regularization possibility for the Boltzmann equation with soft potentials. Kinetic & Related Models, 2008, 1 (3) : 405-414. doi: 10.3934/krm.2008.1.405

[16]

Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun. Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks & Heterogeneous Media, 2013, 8 (4) : 943-968. doi: 10.3934/nhm.2013.8.943

[17]

Nikolaos Bournaveas, Vincent Calvez. Global existence for the kinetic chemotaxis model without pointwise memory effects, and including internal variables. Kinetic & Related Models, 2008, 1 (1) : 29-48. doi: 10.3934/krm.2008.1.29

[18]

Marc Briant. Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions. Kinetic & Related Models, 2015, 8 (2) : 281-308. doi: 10.3934/krm.2015.8.281

[19]

Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter. Strong smoothing for the non-cutoff homogeneous Boltzmann equation for Maxwellian molecules with Debye-Yukawa type interaction. Kinetic & Related Models, 2017, 10 (4) : 901-924. doi: 10.3934/krm.2017036

[20]

Yemin Chen. Analytic regularity for solutions of the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials. Kinetic & Related Models, 2010, 3 (4) : 645-667. doi: 10.3934/krm.2010.3.645

2017 Impact Factor: 0.884

Article outline

[Back to Top]