• Previous Article
    Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems
  • CPAA Home
  • This Issue
  • Next Article
    Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $
July 2019, 18(4): 1637-1662. doi: 10.3934/cpaa.2019078

New general decay results in a finite-memory bresse system

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, P.O. Box 546, Dhahran 31261, Saudi Arabia

* Corresponding author

Received  April 2018 Revised  July 2018 Published  January 2019

Fund Project: This work is funded by KFUPM under Project IN161006

This paper is concerned with the following memory-type Bresse system
$ \begin{array}{ll} \rho_1\varphi_{tt}-k_1(\varphi_x+\psi+lw)_x-lk_3(w_x-l\varphi) = 0,\\ \rho_2\psi_{tt}-k_2\psi_{xx}+k_1(\varphi_x+\psi+lw)+ \int_0^tg(t-s)\psi_{xx}(\cdot,s)ds = 0,\\ \rho_1w_{tt}-k_3(w_x-l\varphi)_x+lk_1(\varphi_x+\psi+lw) = 0, \end{array} $
with homogeneous Dirichlet-Neumann-Neumann boundary conditions, where
$ (x,t) \in (0,L) \times (0, \infty) $
,
$ g $
is a positive strictly increasing function satisfying, for some nonnegative functions
$ \xi $
and
$ H $
,
$ g'(t)\leq-\xi(t)H(g(t)),\qquad\forall t\geq0. $
Under appropriate conditions on
$ \xi $
and
$ H $
, we prove, in cases of equal and non-equal speeds of wave propagation, some new decay results that generalize and improve the recent results in the literature.
Citation: Salim A. Messaoudi, Jamilu Hashim Hassan. New general decay results in a finite-memory bresse system. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1637-1662. doi: 10.3934/cpaa.2019078
References:
[1]

M. O. AlvesL. H. FatoriM. A. Jorge Silva and R. N. Monteriro, Stability and optimality of decay rate for a weakly dissipative Bresse system, Math. Methods Appl. Sci., 38 (2015), 898-908. doi: 10.1002/mma.3115.

[2]

M. S. Alves, O. Vera, J. Muñoz-Rivera and A. Rambaud, Exponential stability to the Bresse system with boundary dissipation conditions, (2015), arXiv: 1506.01657.

[3]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.

[4]

F. Dell'Oro, Asymptotic stability of thermoelastic systems of Bresse type, J. Differ. Equ., 258 (2015), 3902-3927. doi: 10.1016/j.jde.2015.01.025.

[5]

L. H. Fatori and R. N. Monteiro, The optimal decay rate for a weak dissipative Bresse system, Appl. Math. Lett., 25 (2012), 600-604. doi: 10.1016/j.aml.2011.09.067.

[6]

A. Guesmia and M. Kafini, Bresse system with infinite memories, Math. Methods Appl. Sci., 38 (2015), 2389-2402. doi: 10.1002/mma.3228.

[7]

A. Guesmia and S. A. Messaoudi, On the stabilization of Timoshenko systems with memory and different speeds of wave propagation, Appl. Math. Comput., 219 (2013), 9424-9437. doi: 10.1016/j.amc.2013.03.105.

[8]

T. F. Ma and R. N. Monteiro, Singular limit and long-time dynamics of Bresse systems, SIAM J. Math. Anal., 49 (2017), 2468-2495. doi: 10.1137/15M1039894.

[9]

M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134-152. doi: 10.1016/j.jmaa.2017.08.019.

[10]

J. A. SorianoJ. E. Muñoz Rivera and L. H. Fatori, Bresse system with indefinite damping, J. Math. Anal. Appl., 387 (2012), 284-290. doi: 10.1016/j.jmaa.2011.08.072.

[11]

A. Soufyane and B. Said-Houari, The effect of the wave speeds and the frictional damping terms on the decay rate of the bresse system, Evol. Equations Control Theory, 3 (2014), 713-738. doi: 10.3934/eect.2014.3.713.

[12]

A. Wehbe and W. Youssef, Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks, J. Math. Phys., 51 (2010), 1-17. doi: 10.1063/1.3486094.

show all references

References:
[1]

M. O. AlvesL. H. FatoriM. A. Jorge Silva and R. N. Monteriro, Stability and optimality of decay rate for a weakly dissipative Bresse system, Math. Methods Appl. Sci., 38 (2015), 898-908. doi: 10.1002/mma.3115.

[2]

M. S. Alves, O. Vera, J. Muñoz-Rivera and A. Rambaud, Exponential stability to the Bresse system with boundary dissipation conditions, (2015), arXiv: 1506.01657.

[3]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.

[4]

F. Dell'Oro, Asymptotic stability of thermoelastic systems of Bresse type, J. Differ. Equ., 258 (2015), 3902-3927. doi: 10.1016/j.jde.2015.01.025.

[5]

L. H. Fatori and R. N. Monteiro, The optimal decay rate for a weak dissipative Bresse system, Appl. Math. Lett., 25 (2012), 600-604. doi: 10.1016/j.aml.2011.09.067.

[6]

A. Guesmia and M. Kafini, Bresse system with infinite memories, Math. Methods Appl. Sci., 38 (2015), 2389-2402. doi: 10.1002/mma.3228.

[7]

A. Guesmia and S. A. Messaoudi, On the stabilization of Timoshenko systems with memory and different speeds of wave propagation, Appl. Math. Comput., 219 (2013), 9424-9437. doi: 10.1016/j.amc.2013.03.105.

[8]

T. F. Ma and R. N. Monteiro, Singular limit and long-time dynamics of Bresse systems, SIAM J. Math. Anal., 49 (2017), 2468-2495. doi: 10.1137/15M1039894.

[9]

M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134-152. doi: 10.1016/j.jmaa.2017.08.019.

[10]

J. A. SorianoJ. E. Muñoz Rivera and L. H. Fatori, Bresse system with indefinite damping, J. Math. Anal. Appl., 387 (2012), 284-290. doi: 10.1016/j.jmaa.2011.08.072.

[11]

A. Soufyane and B. Said-Houari, The effect of the wave speeds and the frictional damping terms on the decay rate of the bresse system, Evol. Equations Control Theory, 3 (2014), 713-738. doi: 10.3934/eect.2014.3.713.

[12]

A. Wehbe and W. Youssef, Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks, J. Math. Phys., 51 (2010), 1-17. doi: 10.1063/1.3486094.

[1]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations & Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[2]

Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209

[3]

Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541

[4]

Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations & Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008

[5]

Dongbing Zha, Yi Zhou. The lifespan for quasilinear wave equations with multiple propagation speeds in four space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1167-1186. doi: 10.3934/cpaa.2014.13.1167

[6]

Kunimochi Sakamoto. Destabilization threshold curves for diffusion systems with equal diffusivity under non-diagonal flux boundary conditions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 641-654. doi: 10.3934/dcdsb.2016.21.641

[7]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[8]

Mohammad M. Al-Gharabli, Aissa Guesmia, Salim A. Messaoudi. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 159-180. doi: 10.3934/cpaa.2019009

[9]

Yvan Martel, Frank Merle. Inelastic interaction of nearly equal solitons for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 487-532. doi: 10.3934/dcds.2010.27.487

[10]

Jeffrey Diller, Han Liu, Roland K. W. Roeder. Typical dynamics of plane rational maps with equal degrees. Journal of Modern Dynamics, 2016, 10: 353-377. doi: 10.3934/jmd.2016.10.353

[11]

Abbes Benaissa, Abderrahmane Kasmi. Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4361-4395. doi: 10.3934/dcdsb.2018168

[12]

Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425

[13]

William Thomson. For claims problems, another compromise between the proportional and constrained equal awards rules. Journal of Dynamics & Games, 2015, 2 (3&4) : 363-382. doi: 10.3934/jdg.2015011

[14]

Eduardo S. G. Leandro. On the Dziobek configurations of the restricted $(N+1)$-body problem with equal masses. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 589-595. doi: 10.3934/dcdss.2008.1.589

[15]

Étienne Bernard, Marie Doumic, Pierre Gabriel. Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts. Kinetic & Related Models, 2019, 12 (3) : 551-571. doi: 10.3934/krm.2019022

[16]

W. Wei, Yin Li, Zheng-An Yao. Decay of the compressible viscoelastic flows. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1603-1624. doi: 10.3934/cpaa.2016004

[17]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[18]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[19]

Yuming Qin, Xinguang Yang, Zhiyong Ma. Global existence of solutions for the thermoelastic Bresse system. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1395-1406. doi: 10.3934/cpaa.2014.13.1395

[20]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

2017 Impact Factor: 0.884

Article outline

[Back to Top]