• Previous Article
    A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach
  • CPAA Home
  • This Issue
  • Next Article
    Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations
May  2019, 18(3): 1351-1358. doi: 10.3934/cpaa.2019065

Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up

1. 

College of Science, Harbin Engineering University, 150001, China

2. 

College of Computer Science and Technology, Harbin Engineering University, 150001, China

3. 

Department of Mathematics, University of Texas, Arlington, TX 76019, USA

* Corresponding author

Received  June 2018 Revised  September 2018 Published  November 2018

Fund Project: The first author was supported by the National Natural Science Foundation of China (11801114), the Heilongjiang Postdoctoral Foundation (LBH-Z15036), the China Scholarship Council (201706685064), the Fundamental Research Funds for the Central Universities. The second author was supported by the National Natural Science Foundation of China (11871017), the China Postdoctoral Science Foundation (2013M540270), the Fundamental Research Funds for the Central Universities

By introducing a new increasing auxiliary function and employing the adapted concavity method, this paper presents a finite time blow up result of the solution for the initial boundary value problem of a class of nonlinear wave equations with both strongly and weakly damped terms at supercritical initial energy level.

Citation: Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065
References:
[1]

B. Bilgin and V. Kalantarov, Blow up of solutions to the initial boundary value problem for quasilinear strongly damped wave equations, J. Math. Anal. Appl., 403 (2013), 89-94. doi: 10.1016/j.jmaa.2013.01.056. Google Scholar

[2]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683. doi: 10.1016/j.jde.2010.03.009. Google Scholar

[3]

H. Chen and G. Liu, Well-posedness for a class of Kirchhoff equations with damping and memory terms, IMA J. Appl. Math., 80 (2015), 1808-1836. doi: 10.1093/imamat/hxv018. Google Scholar

[4]

F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185-207. doi: 10.1016/j.anihpc.2005.02.007. Google Scholar

[5]

S. Gerbi and B. Said-Houari, Exponential decay for solutions to semilinear damped wave equation, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 559-566. doi: 10.3934/dcdss.2012.5.559. Google Scholar

[6]

S. Gerbi and B. Said-Houari, Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions, Adv. Nonlinear Anal., 2 (2013), 163-193. Google Scholar

[7]

P. Graber and B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions, Appl. Math. Optim., 66 (2012), 81-122. doi: 10.1007/s00245-012-9165-1. Google Scholar

[8]

G. Liu and S. Xia, Global existence and finite time blow up for a class of semilinear wave equations on R-N, Comput. Math. Appl., 70 (2015), 1345-1356. doi: 10.1016/j.camwa.2015.07.021. Google Scholar

[9]

Y. Liu and R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differential Equations, 244 (2008), 200-228. doi: 10.1016/j.jde.2007.10.015. Google Scholar

[10]

G. Philippin, Lower bounds for blow-up time in a class of nonlinear wave equations, Z. Angew. Math. Phys., 66 (2015), 129-134. doi: 10.1007/s00033-014-0400-2. Google Scholar

[11]

B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Differential Integral Equations, 23 (2010), 79-92. Google Scholar

[12]

J. Shen, Y. Yang, S. Chen and R. Xu, Finite time blow up of fourth-order wave equations with nonlinear strain and source terms at high energy level, Internat. J. Math., 24 (2013), 1350043. doi: 10.1142/S0129167X13500432. Google Scholar

[13]

H. Song and D. Xue, Blow up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Anal., 19 (2014), 245-251. doi: 10.1016/j.na.2014.06.012. Google Scholar

[14]

H. Song and C. Zhong, Blow-up of solutions of a nonlinear viscoelastic wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 3877-3883. doi: 10.1016/j.nonrwa.2010.02.015. Google Scholar

[15]

Y. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477-3482. doi: 10.1090/S0002-9939-08-09514-2. Google Scholar

[16]

Y. Wang, Non-existence of global solutions of a class of coupled non-linear Klein-Gordon equations with non-negative potentials and arbitrary initial energy, IMA J. Appl. Math., 74 (2009), 392-415. doi: 10.1093/imamat/hxp004. Google Scholar

[17]

T. Wick, Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity, Comput. Mech., 53 (2014), 29-43. doi: 10.1007/s00466-013-0890-3. Google Scholar

[18]

R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quart. Appl. Math., 68 (2010), 459-468. Google Scholar

[19]

R. Xu and Y. Yang, Global existence and asymptotic behaviour of solutions for a class of fourth order strongly damped nonlinear wave equations, Quart. Appl. Math., 71 (2013), 401-415. doi: 10.1090/s0033-569x-2012-01295-6. Google Scholar

[20]

R. XuY. Yang and Y. Liu, Global well-posedness for strongly damped viscoelastic wave equation, Appl. Anal., 92 (2013), 138-157. doi: 10.1080/00036811.2011.601456. Google Scholar

[21]

R. XuY. YangB. LiuJ. Shen and S. Huang, Global existence and blowup of solutions for the multidimensional sixth-order "good" Boussinesq equation, Z. Angew. Math. Phys., 66 (2015), 955-976. doi: 10.1007/s00033-014-0459-9. Google Scholar

[22]

X. ZhuF. Li and T. Rong, Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source, Commun. Pure Appl. Anal., 14 (2015), 2465-2485. doi: 10.3934/cpaa.2015.14.2465. Google Scholar

show all references

References:
[1]

B. Bilgin and V. Kalantarov, Blow up of solutions to the initial boundary value problem for quasilinear strongly damped wave equations, J. Math. Anal. Appl., 403 (2013), 89-94. doi: 10.1016/j.jmaa.2013.01.056. Google Scholar

[2]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683. doi: 10.1016/j.jde.2010.03.009. Google Scholar

[3]

H. Chen and G. Liu, Well-posedness for a class of Kirchhoff equations with damping and memory terms, IMA J. Appl. Math., 80 (2015), 1808-1836. doi: 10.1093/imamat/hxv018. Google Scholar

[4]

F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185-207. doi: 10.1016/j.anihpc.2005.02.007. Google Scholar

[5]

S. Gerbi and B. Said-Houari, Exponential decay for solutions to semilinear damped wave equation, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 559-566. doi: 10.3934/dcdss.2012.5.559. Google Scholar

[6]

S. Gerbi and B. Said-Houari, Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions, Adv. Nonlinear Anal., 2 (2013), 163-193. Google Scholar

[7]

P. Graber and B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions, Appl. Math. Optim., 66 (2012), 81-122. doi: 10.1007/s00245-012-9165-1. Google Scholar

[8]

G. Liu and S. Xia, Global existence and finite time blow up for a class of semilinear wave equations on R-N, Comput. Math. Appl., 70 (2015), 1345-1356. doi: 10.1016/j.camwa.2015.07.021. Google Scholar

[9]

Y. Liu and R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differential Equations, 244 (2008), 200-228. doi: 10.1016/j.jde.2007.10.015. Google Scholar

[10]

G. Philippin, Lower bounds for blow-up time in a class of nonlinear wave equations, Z. Angew. Math. Phys., 66 (2015), 129-134. doi: 10.1007/s00033-014-0400-2. Google Scholar

[11]

B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Differential Integral Equations, 23 (2010), 79-92. Google Scholar

[12]

J. Shen, Y. Yang, S. Chen and R. Xu, Finite time blow up of fourth-order wave equations with nonlinear strain and source terms at high energy level, Internat. J. Math., 24 (2013), 1350043. doi: 10.1142/S0129167X13500432. Google Scholar

[13]

H. Song and D. Xue, Blow up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Anal., 19 (2014), 245-251. doi: 10.1016/j.na.2014.06.012. Google Scholar

[14]

H. Song and C. Zhong, Blow-up of solutions of a nonlinear viscoelastic wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 3877-3883. doi: 10.1016/j.nonrwa.2010.02.015. Google Scholar

[15]

Y. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477-3482. doi: 10.1090/S0002-9939-08-09514-2. Google Scholar

[16]

Y. Wang, Non-existence of global solutions of a class of coupled non-linear Klein-Gordon equations with non-negative potentials and arbitrary initial energy, IMA J. Appl. Math., 74 (2009), 392-415. doi: 10.1093/imamat/hxp004. Google Scholar

[17]

T. Wick, Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity, Comput. Mech., 53 (2014), 29-43. doi: 10.1007/s00466-013-0890-3. Google Scholar

[18]

R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quart. Appl. Math., 68 (2010), 459-468. Google Scholar

[19]

R. Xu and Y. Yang, Global existence and asymptotic behaviour of solutions for a class of fourth order strongly damped nonlinear wave equations, Quart. Appl. Math., 71 (2013), 401-415. doi: 10.1090/s0033-569x-2012-01295-6. Google Scholar

[20]

R. XuY. Yang and Y. Liu, Global well-posedness for strongly damped viscoelastic wave equation, Appl. Anal., 92 (2013), 138-157. doi: 10.1080/00036811.2011.601456. Google Scholar

[21]

R. XuY. YangB. LiuJ. Shen and S. Huang, Global existence and blowup of solutions for the multidimensional sixth-order "good" Boussinesq equation, Z. Angew. Math. Phys., 66 (2015), 955-976. doi: 10.1007/s00033-014-0459-9. Google Scholar

[22]

X. ZhuF. Li and T. Rong, Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source, Commun. Pure Appl. Anal., 14 (2015), 2465-2485. doi: 10.3934/cpaa.2015.14.2465. Google Scholar

Table 1.  Obtained results and open problems for problem (1)-(3)
Global existence Asymptotic behavior Blow up
Subcritical initial energy $E(0)<d$ Reference [4] Reference [4] Reference [4]
Critical initial energy $E(0)=d$ Reference [4] Reference [4] Reference [4]
Supercritical initial energy $E(0)>d$ Open problem Open problem $\omega=0$, $\mu>0$
$\omega=0$, $\mu=0$
Reference [4]
$\omega>0$, $\mu>0$
$\omega>0$, $\mu=0$
$\omega=0$, $\mu>0$
$\omega=0$, $\mu=0$
Present paper
Global existence Asymptotic behavior Blow up
Subcritical initial energy $E(0)<d$ Reference [4] Reference [4] Reference [4]
Critical initial energy $E(0)=d$ Reference [4] Reference [4] Reference [4]
Supercritical initial energy $E(0)>d$ Open problem Open problem $\omega=0$, $\mu>0$
$\omega=0$, $\mu=0$
Reference [4]
$\omega>0$, $\mu>0$
$\omega>0$, $\mu=0$
$\omega=0$, $\mu>0$
$\omega=0$, $\mu=0$
Present paper
[1]

Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072

[2]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[3]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[4]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[5]

Jong-Shenq Guo, Masahiko Shimojo. Blowing up at zero points of potential for an initial boundary value problem. Communications on Pure & Applied Analysis, 2011, 10 (1) : 161-177. doi: 10.3934/cpaa.2011.10.161

[6]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[7]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[8]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[9]

Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319

[10]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[11]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[12]

Runzhang Xu, Mingyou Zhang, Shaohua Chen, Yanbing Yang, Jihong Shen. The initial-boundary value problems for a class of sixth order nonlinear wave equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5631-5649. doi: 10.3934/dcds.2017244

[13]

Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617

[14]

Zhiyuan Li, Xinchi Huang, Masahiro Yamamoto. Initial-boundary value problems for multi-term time-fractional diffusion equations with $ x $-dependent coefficients. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020001

[15]

Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831

[16]

Martn P. Árciga Alejandre, Elena I. Kaikina. Mixed initial-boundary value problem for Ott-Sudan-Ostrovskiy equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 381-409. doi: 10.3934/dcds.2012.32.381

[17]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[18]

Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133

[19]

Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212

[20]

Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (125)
  • HTML views (250)
  • Cited by (0)

Other articles
by authors

[Back to Top]