May 2019, 18(3): 1281-1302. doi: 10.3934/cpaa.2019062

Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems

Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China

* Corresponding author: Jie Liao

Received  May 2018 Revised  August 2018 Published  November 2018

Fund Project: The research is partially supported by NSFC grants 11671134 and 11871335

In the paper, we consider a three-dimensional bipolar hydrodynamic model from semiconductor devices and plasmas. This system takes the form of Euler-Poisson with electric field and relaxation term added to the momentum equations. We first construct the planar diffusion waves. Next we show the global existence of smooth solutions for the initial value problem of three-dimensional bipolar Euler-Poisson systems when the initial data are near the planar diffusive waves. Finally, we also establish the $ L^p(p∈[2,+∞])$ convergence rates of the solutions toward the planar diffusion waves. A frequency decomposition, approximate Green function and delicate energy method are used to prove our results.

Citation: Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062
References:
[1]

G. Ali and A. Jüngel, Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasma, J. Differential Equations, 190 (2003), 663-685. doi: 10.1016/S0022-0396(02)00157-2.

[2]

G. Ali and L. Chen, The zero-electron-mass limit in the Euler-Poisson system for both well- and ill-prepared initial data, Nonlinearity, 24 (2011), 2745-2761. doi: 10.1088/0951-7715/24/10/005.

[3]

D. DonatelliM. MeiB. Rubino and R. Sampalmieri, Asymptotic behavior of solutions to Euler-Poisson equations for bipolar hydrodynamic model of semiconductors, J. Differential Equations, 255 (2013), 3150-3184. doi: 10.1016/j.jde.2013.07.027.

[4]

I. GasserL. Hsiao and H.-L. Li, Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors, J. Differential Equations, 192 (2003), 326-359. doi: 10.1016/S0022-0396(03)00122-0.

[5]

I. Gasser and P. Marcati, The combined relaxation and vanishing Debye length limit in the hydrodynamic model for semiconductors, Math. Meth. Appl. Sci., 24 (2001), 81-92. doi: 10.1002/1099-1476(20010125)24:2<81::AID-MMA198>3.3.CO;2-O.

[6]

F.-M. Huang and Y.-P. Li, Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum, Dis. Contin. Dyn. Sys., A24 (2009), 455-470. doi: 10.3934/dcds.2009.24.455.

[7]

F.-M. HuangM. Mei and Y. Wang, Large time behavior of solution to n-dimensional bipolar hydrodynamic model for semiconductors, SIAM J. Math. Anal., 43 (2011), 1595-1630. doi: 10.1137/100810228.

[8]

F.-M. HuangM. MeiY. Wang and T. Yang, Large-time behavior of solution to the bipolar hydrodynamic model of semiconductors with boundary effects, SIAM J. Math. Anal., 44 (2012), 1134-1164. doi: 10.1137/110831647.

[9]

L. Hsiao and K.-J. Zhang, The global weak solution and relaxation limits of the initial boundary value problem to the bipolar hydrodynamic model for semiconductors, Math. Models Methods Appl. Sci., 10 (2000), 1333-1361. doi: 10.1142/S0218202500000653.

[10]

L. Hsiao and K.-J. Zhang, The relaxation of the hydrodynamic model for semiconductors to the drift-diffusion equations, J. Differential Equations, 165 (2000), 315-354. doi: 10.1006/jdeq.2000.3780.

[11]

L. Hsiao and T.-P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599-605.

[12]

A. Jüngel, Quasi-hydrodynamic semiconductor equations, in Progress in Nonlinear Differential Equations, Birkhäuser, 2001. doi: 10.1007/978-3-0348-8334-4.

[13]

Q.-C. Ju, Global smooth solutions to the multidimensional hydrodynamic model for plasmas with insulating boundary conditions, J. Math. Anal. Appl., 336 (2007), 888-904. doi: 10.1016/j.jmaa.2007.03.038.

[14]

Q.-C. JuH.-L. LiY. Li and S. Jiang, Quasi-neutral limit of the two-fluid Euler-Poisson system, Comm. Pure Appl. Anal., 9 (2010), 1577-1590. doi: 10.3934/cpaa.2010.9.1577.

[15]

C. Lattanzio, On the 3-D bipolar isentropic Euler-Poisson model for semiconductors and the drift-diffusion limit, Math. Models Methods Appl. Sci., 10 (2000), 351-360. doi: 10.1142/S0218202500000215.

[16]

Y.-P. Li and T. Zhang, Relaxation-time limit of the multidimensional bipolar hydrodynamic model in Besov space, J. Differential Equations, 251 (2011), 3143-3162. doi: 10.1016/j.jde.2011.07.018.

[17]

Y.-P. Li, Diffusion relaxation limit of a bipolar isentropic hydrodynamic model for semiconductors, J. Math. Anal. Appl., 336 (2007), 1341-1356. doi: 10.1016/j.jmaa.2007.03.068.

[18]

Y.-P. Li, Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system, Dis. Contin. Dyn. Sys., B16 (2011), 345-360. doi: 10.3934/dcdsb.2011.16.345.

[19]

Y.-P. Li and X.-F. Yang, Global existence and asymptotic behavior of the solutions to the three dimensional bipolar Euler-Poisson systems, J. Differential Equations, 252 (2012), 768-791. doi: 10.1016/j.jde.2011.08.008.

[20]

J. LiaoW. K. Wang and T. Yang, $ L^{p}$ convergence rates of planar waves for multi-dimensional Euler equations with damping, J. Differential Equations, 247 (2009), 303-329. doi: 10.1016/j.jde.2009.03.011.

[21]

P. A. Markowich, C. A. Ringhofev and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Wien, New York, 1990. doi: 10.1007/978-3-7091-6961-2.

[22]

R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equation, J. Math. Anal. Appl., 198 (1996), 262-281. doi: 10.1006/jmaa.1996.0081.

[23]

Y.-J. Peng and J. Xu, Global well-posedness of the hydrodynamic model for two-carrier plasmas, J. Differential Equations, 255 (2013), 3447-3471. doi: 10.1016/j.jde.2013.07.045.

[24]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

[25]

A. Sitnko and V. Malnev, Plasma Physics Theory, London: Chapman & Hall, 1995.

[26]

N. Tsuge, Existence and uniqueness of stationary solutions to a one-dimensional bipolar hydrodynamic models of semiconductors, Nonlinear Anal. TMA, 73 (2010), 779-787. doi: 10.1016/j.na.2010.04.015.

[27]

Z.-G. Wu and W.-K. Wang, Decay of the solution to the bipolar Euler-Poisson system with damping in $ R^3$, Commun. Math. Sci., 12 (2014), 1257-1276. doi: 10.4310/CMS.2014.v12.n7.a5.

[28]

W. Wang and T. Yang, Existence and stability of planar diffusion waves for $ 2-D$ Euler equations with damping, J. Differential Equations, 242 (2007), 40-71. doi: 10.1016/j.jde.2007.07.002.

[29]

C. Zhu and H. Hattori, Stability of steady state solutions for an isentropic hydrodynamic model of semiconductors of two species, J. Differential Equations, 166 (2000), 1-32. doi: 10.1006/jdeq.2000.3799.

[30]

F. Zhou and Y.-P. Li, Existence and some limits of stationary solutions to a one-dimensional bipolar Euler-Poisson system, J. Math. Anal. Appl., 351 (2009), 480-490. doi: 10.1016/j.jmaa.2008.10.032.

show all references

References:
[1]

G. Ali and A. Jüngel, Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasma, J. Differential Equations, 190 (2003), 663-685. doi: 10.1016/S0022-0396(02)00157-2.

[2]

G. Ali and L. Chen, The zero-electron-mass limit in the Euler-Poisson system for both well- and ill-prepared initial data, Nonlinearity, 24 (2011), 2745-2761. doi: 10.1088/0951-7715/24/10/005.

[3]

D. DonatelliM. MeiB. Rubino and R. Sampalmieri, Asymptotic behavior of solutions to Euler-Poisson equations for bipolar hydrodynamic model of semiconductors, J. Differential Equations, 255 (2013), 3150-3184. doi: 10.1016/j.jde.2013.07.027.

[4]

I. GasserL. Hsiao and H.-L. Li, Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors, J. Differential Equations, 192 (2003), 326-359. doi: 10.1016/S0022-0396(03)00122-0.

[5]

I. Gasser and P. Marcati, The combined relaxation and vanishing Debye length limit in the hydrodynamic model for semiconductors, Math. Meth. Appl. Sci., 24 (2001), 81-92. doi: 10.1002/1099-1476(20010125)24:2<81::AID-MMA198>3.3.CO;2-O.

[6]

F.-M. Huang and Y.-P. Li, Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum, Dis. Contin. Dyn. Sys., A24 (2009), 455-470. doi: 10.3934/dcds.2009.24.455.

[7]

F.-M. HuangM. Mei and Y. Wang, Large time behavior of solution to n-dimensional bipolar hydrodynamic model for semiconductors, SIAM J. Math. Anal., 43 (2011), 1595-1630. doi: 10.1137/100810228.

[8]

F.-M. HuangM. MeiY. Wang and T. Yang, Large-time behavior of solution to the bipolar hydrodynamic model of semiconductors with boundary effects, SIAM J. Math. Anal., 44 (2012), 1134-1164. doi: 10.1137/110831647.

[9]

L. Hsiao and K.-J. Zhang, The global weak solution and relaxation limits of the initial boundary value problem to the bipolar hydrodynamic model for semiconductors, Math. Models Methods Appl. Sci., 10 (2000), 1333-1361. doi: 10.1142/S0218202500000653.

[10]

L. Hsiao and K.-J. Zhang, The relaxation of the hydrodynamic model for semiconductors to the drift-diffusion equations, J. Differential Equations, 165 (2000), 315-354. doi: 10.1006/jdeq.2000.3780.

[11]

L. Hsiao and T.-P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599-605.

[12]

A. Jüngel, Quasi-hydrodynamic semiconductor equations, in Progress in Nonlinear Differential Equations, Birkhäuser, 2001. doi: 10.1007/978-3-0348-8334-4.

[13]

Q.-C. Ju, Global smooth solutions to the multidimensional hydrodynamic model for plasmas with insulating boundary conditions, J. Math. Anal. Appl., 336 (2007), 888-904. doi: 10.1016/j.jmaa.2007.03.038.

[14]

Q.-C. JuH.-L. LiY. Li and S. Jiang, Quasi-neutral limit of the two-fluid Euler-Poisson system, Comm. Pure Appl. Anal., 9 (2010), 1577-1590. doi: 10.3934/cpaa.2010.9.1577.

[15]

C. Lattanzio, On the 3-D bipolar isentropic Euler-Poisson model for semiconductors and the drift-diffusion limit, Math. Models Methods Appl. Sci., 10 (2000), 351-360. doi: 10.1142/S0218202500000215.

[16]

Y.-P. Li and T. Zhang, Relaxation-time limit of the multidimensional bipolar hydrodynamic model in Besov space, J. Differential Equations, 251 (2011), 3143-3162. doi: 10.1016/j.jde.2011.07.018.

[17]

Y.-P. Li, Diffusion relaxation limit of a bipolar isentropic hydrodynamic model for semiconductors, J. Math. Anal. Appl., 336 (2007), 1341-1356. doi: 10.1016/j.jmaa.2007.03.068.

[18]

Y.-P. Li, Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system, Dis. Contin. Dyn. Sys., B16 (2011), 345-360. doi: 10.3934/dcdsb.2011.16.345.

[19]

Y.-P. Li and X.-F. Yang, Global existence and asymptotic behavior of the solutions to the three dimensional bipolar Euler-Poisson systems, J. Differential Equations, 252 (2012), 768-791. doi: 10.1016/j.jde.2011.08.008.

[20]

J. LiaoW. K. Wang and T. Yang, $ L^{p}$ convergence rates of planar waves for multi-dimensional Euler equations with damping, J. Differential Equations, 247 (2009), 303-329. doi: 10.1016/j.jde.2009.03.011.

[21]

P. A. Markowich, C. A. Ringhofev and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Wien, New York, 1990. doi: 10.1007/978-3-7091-6961-2.

[22]

R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equation, J. Math. Anal. Appl., 198 (1996), 262-281. doi: 10.1006/jmaa.1996.0081.

[23]

Y.-J. Peng and J. Xu, Global well-posedness of the hydrodynamic model for two-carrier plasmas, J. Differential Equations, 255 (2013), 3447-3471. doi: 10.1016/j.jde.2013.07.045.

[24]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

[25]

A. Sitnko and V. Malnev, Plasma Physics Theory, London: Chapman & Hall, 1995.

[26]

N. Tsuge, Existence and uniqueness of stationary solutions to a one-dimensional bipolar hydrodynamic models of semiconductors, Nonlinear Anal. TMA, 73 (2010), 779-787. doi: 10.1016/j.na.2010.04.015.

[27]

Z.-G. Wu and W.-K. Wang, Decay of the solution to the bipolar Euler-Poisson system with damping in $ R^3$, Commun. Math. Sci., 12 (2014), 1257-1276. doi: 10.4310/CMS.2014.v12.n7.a5.

[28]

W. Wang and T. Yang, Existence and stability of planar diffusion waves for $ 2-D$ Euler equations with damping, J. Differential Equations, 242 (2007), 40-71. doi: 10.1016/j.jde.2007.07.002.

[29]

C. Zhu and H. Hattori, Stability of steady state solutions for an isentropic hydrodynamic model of semiconductors of two species, J. Differential Equations, 166 (2000), 1-32. doi: 10.1006/jdeq.2000.3799.

[30]

F. Zhou and Y.-P. Li, Existence and some limits of stationary solutions to a one-dimensional bipolar Euler-Poisson system, J. Math. Anal. Appl., 351 (2009), 480-490. doi: 10.1016/j.jmaa.2008.10.032.

[1]

Yeping Li. Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 345-360. doi: 10.3934/dcdsb.2011.16.345

[2]

Hong Cai, Zhong Tan. Stability of stationary solutions to the compressible bipolar Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4677-4696. doi: 10.3934/dcds.2017201

[3]

Corrado Lattanzio, Pierangelo Marcati. The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 449-455. doi: 10.3934/dcds.1999.5.449

[4]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[5]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

[6]

Myoungjean Bae, Yong Park. Radial transonic shock solutions of Euler-Poisson system in convergent nozzles. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 773-791. doi: 10.3934/dcdss.2018049

[7]

Zhigang Wu, Weike Wang. Pointwise estimates of solutions for the Euler-Poisson equations with damping in multi-dimensions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1101-1117. doi: 10.3934/dcds.2010.26.1101

[8]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[9]

Qiangchang Ju, Hailiang Li, Yong Li, Song Jiang. Quasi-neutral limit of the two-fluid Euler-Poisson system. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1577-1590. doi: 10.3934/cpaa.2010.9.1577

[10]

Ming Mei, Yong Wang. Stability of stationary waves for full Euler-Poisson system in multi-dimensional space. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1775-1807. doi: 10.3934/cpaa.2012.11.1775

[11]

Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583

[12]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure & Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

[13]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[14]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[15]

Manwai Yuen. Cylindrical blowup solutions to the isothermal Euler-Poisson equations. Conference Publications, 2011, 2011 (Special) : 1448-1456. doi: 10.3934/proc.2011.2011.1448

[16]

Jiang Xu, Ting Zhang. Zero-electron-mass limit of Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4743-4768. doi: 10.3934/dcds.2013.33.4743

[17]

Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085

[18]

Sasho Popov, Jean-Marie Strelcyn. The Euler-Poisson equations: An elementary approach to integrability conditions. Journal of Geometric Mechanics, 2018, 10 (3) : 293-329. doi: 10.3934/jgm.2018011

[19]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control & Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[20]

Masahiro Suzuki. Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinetic & Related Models, 2011, 4 (2) : 569-588. doi: 10.3934/krm.2011.4.569

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (7)
  • HTML views (20)
  • Cited by (0)

Other articles
by authors

[Back to Top]