• Previous Article
    Backward compact and periodic random attractors for non-autonomous sine-Gordon equations with multiplicative noise
  • CPAA Home
  • This Issue
  • Next Article
    Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian
May 2019, 18(3): 1177-1203. doi: 10.3934/cpaa.2019057

The Cauchy problem for a family of two-dimensional fractional Benjamin-Ono equations

Departamento de Matemáticas, Universidad Nacional de Colombia, A. A. 3840 Medellín, Colombia

Received  March 2018 Revised  August 2018 Published  November 2018

In this work we prove that the initial value problem (IVP) associated to the fractional two-dimensional Benjamin-Ono equation
$\left. \begin{array}{rl} u_t+D_x^{\alpha} u_x +\mathcal Hu_{yy} +uu_x &\hspace{-2mm} = 0, \qquad\qquad (x, y)\in\mathbb R^2, \; t\in\mathbb R, \\ u(x, y, 0)&\hspace{-2mm} = u_0(x, y), \end{array} \right\}\, , $
where
$0 < \alpha\leq1$, $D_x^{\alpha}$
denotes the operator defined through the Fourier transform by
$(D_x^{\alpha}f)\widehat{\;\;}(\xi, \eta): = |\xi|^{\alpha}\widehat{f}(\xi, \eta)\, , ~~~~~~~~~~~~~~~~~~~~~~~~(0.1)$
and
$\mathcal H$
denotes the Hilbert transform with respect to the variable x, is locally well posed in the Sobolev space
$H^s(\mathbb R^2)$ with $s>\dfrac32+\dfrac14(1-\alpha)$
.
Citation: Eddye Bustamante, José Jiménez Urrea, Jorge Mejía. The Cauchy problem for a family of two-dimensional fractional Benjamin-Ono equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1177-1203. doi: 10.3934/cpaa.2019057
References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149 of London Mathematical Society Lecture Notes Series. Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998.

[2]

M. J. Ablowitz and H. Segur, Long internal waves in fluids of great depth, Stud. App. Math., 62 (1980), 249-262. doi: 10.1002/sapm1980623249.

[3]

B. Akers and P. Milewski, A model equation for wave packet solitary waves arising from capillary-gravity flows, Studies in Applied Mathematics, 122 (2009), 249-274. doi: 10.1111/j.1467-9590.2009.00432.x.

[4]

J. L. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. Lond., Ser. A, 278 (1975), 555-601. doi: 10.1098/rsta.1975.0035.

[5]

A. Cunha and A. Pastor, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces, J. Differential Equations, 261 (2016), 2041-2067. doi: 10.1016/j.jde.2016.04.022.

[6]

A. Esfahani and A. Pastor, Ill-posedness results for the (generalized) Benjamin-Ono-Zakharov-Kuznetsov equation, Proc. Amer. Math. Soc., 139 (2011), 943-956. doi: 10.1090/S0002-9939-2010-10532-4.

[7]

A. Esfahani and A. Pastor, Two dimensional solitary waves in shear flows, Calc. Var. Partial Differential Equations, 57 (2018), 57-102. doi: 10.1007/s00526-018-1383-1.

[8]

T. Kato, Quasilinear equations of evolution, with applications to PDE, Lecture Notes in Mathematics, vol. 448, Springer, Berlin, (1975), 25–70.

[9]

T. Kato, On the Korteweg-de Vries equation, Manuscripta Math., 28 (1979), 89-99. doi: 10.1007/BF01647967.

[10]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704.

[11]

C. Kenig, On the local and global well-posedness theory for the KP-I equation, Ann. I.H. PoincaréAN, 21 (2004), 87-838. doi: 10.1016/j.anihpc.2003.12.002.

[12]

C. Kenig and K. D. Koenig, On the local well posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., 10 (2003), 879-895. doi: 10.4310/MRL.2003.v10.n6.a13.

[13]

C. KenigG. Ponce and L. Vega, On the (generalized) Korteweg-de Vries equation, Duke Mathematical Journal, 59 (1989), 585-610. doi: 10.1215/S0012-7094-89-05927-9.

[14]

C. KenigG. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69. doi: 10.1512/iumj.1991.40.40003.

[15]

C. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[16]

B. Kim, Three-dimensional Solitary Waves in Dispersive Wave Systems, PhD thesis, Massachusets Institute of Technology, Department of Mathematics, Cambridge, MA, 2006.

[17]

H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in $H^s(\mathbb R)$, IMRN International Mathematics Research Notices, 26 (2003), 1449–1464. doi: 10.1155/S1073792803211260.

[18]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext, Springer, 2015. doi: 10.1007/978-1-4939-2181-2.

[19]

F. LinaresD. Pilod and J. C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory, Siam J. Math. Anal., 46 (2014), 1505-1537. doi: 10.1137/130912001.

[20]

F. LinaresD. Pilod and J. C. Saut, The Cauchy problem for the fractional Kadomtsev-Petviashvili equations, SIAM J. Math. Analysis, 50 (2018), 3172-3209. doi: 10.1137/17M1145379.

[21]

L. MolinetJ. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, Siam J. Math. Anal., 33 (2001), 982-988. doi: 10.1137/S0036141001385307.

[22]

D. E. Pelinovsky and V. I. Shrira, Collapse transformation for self-focusing solitary waves in boundary-layer type shear flows, Physics Letters A, 206 (1995), 195-202.

[23]

G. Ponce, On the global well-posedness of the Benjamin-Ono equation, Differential Integral Equations, 4 (1991), 527-542.

[24]

G. Preciado and F. Soriano, On the Cauchy problem of a two-dimensional Benjamin-Ono equation, arXiv:1503.04290v1 [Math.AP] 14 Mar 2015. doi: 10.12732/ijam.v26i6.1.

[25]

J. C. Saut, Sur quelques gééalisations de l'éuation de Korteweg-de Vries, J. Math. Pures Appl., 58 (1979), 21-61.

[26]

T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, Regional Conference Series in Mathematics, Number 106, AMS, 2006. doi: 10.1090/cbms/106.

show all references

References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149 of London Mathematical Society Lecture Notes Series. Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998.

[2]

M. J. Ablowitz and H. Segur, Long internal waves in fluids of great depth, Stud. App. Math., 62 (1980), 249-262. doi: 10.1002/sapm1980623249.

[3]

B. Akers and P. Milewski, A model equation for wave packet solitary waves arising from capillary-gravity flows, Studies in Applied Mathematics, 122 (2009), 249-274. doi: 10.1111/j.1467-9590.2009.00432.x.

[4]

J. L. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. Lond., Ser. A, 278 (1975), 555-601. doi: 10.1098/rsta.1975.0035.

[5]

A. Cunha and A. Pastor, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces, J. Differential Equations, 261 (2016), 2041-2067. doi: 10.1016/j.jde.2016.04.022.

[6]

A. Esfahani and A. Pastor, Ill-posedness results for the (generalized) Benjamin-Ono-Zakharov-Kuznetsov equation, Proc. Amer. Math. Soc., 139 (2011), 943-956. doi: 10.1090/S0002-9939-2010-10532-4.

[7]

A. Esfahani and A. Pastor, Two dimensional solitary waves in shear flows, Calc. Var. Partial Differential Equations, 57 (2018), 57-102. doi: 10.1007/s00526-018-1383-1.

[8]

T. Kato, Quasilinear equations of evolution, with applications to PDE, Lecture Notes in Mathematics, vol. 448, Springer, Berlin, (1975), 25–70.

[9]

T. Kato, On the Korteweg-de Vries equation, Manuscripta Math., 28 (1979), 89-99. doi: 10.1007/BF01647967.

[10]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704.

[11]

C. Kenig, On the local and global well-posedness theory for the KP-I equation, Ann. I.H. PoincaréAN, 21 (2004), 87-838. doi: 10.1016/j.anihpc.2003.12.002.

[12]

C. Kenig and K. D. Koenig, On the local well posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., 10 (2003), 879-895. doi: 10.4310/MRL.2003.v10.n6.a13.

[13]

C. KenigG. Ponce and L. Vega, On the (generalized) Korteweg-de Vries equation, Duke Mathematical Journal, 59 (1989), 585-610. doi: 10.1215/S0012-7094-89-05927-9.

[14]

C. KenigG. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69. doi: 10.1512/iumj.1991.40.40003.

[15]

C. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[16]

B. Kim, Three-dimensional Solitary Waves in Dispersive Wave Systems, PhD thesis, Massachusets Institute of Technology, Department of Mathematics, Cambridge, MA, 2006.

[17]

H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in $H^s(\mathbb R)$, IMRN International Mathematics Research Notices, 26 (2003), 1449–1464. doi: 10.1155/S1073792803211260.

[18]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext, Springer, 2015. doi: 10.1007/978-1-4939-2181-2.

[19]

F. LinaresD. Pilod and J. C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory, Siam J. Math. Anal., 46 (2014), 1505-1537. doi: 10.1137/130912001.

[20]

F. LinaresD. Pilod and J. C. Saut, The Cauchy problem for the fractional Kadomtsev-Petviashvili equations, SIAM J. Math. Analysis, 50 (2018), 3172-3209. doi: 10.1137/17M1145379.

[21]

L. MolinetJ. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, Siam J. Math. Anal., 33 (2001), 982-988. doi: 10.1137/S0036141001385307.

[22]

D. E. Pelinovsky and V. I. Shrira, Collapse transformation for self-focusing solitary waves in boundary-layer type shear flows, Physics Letters A, 206 (1995), 195-202.

[23]

G. Ponce, On the global well-posedness of the Benjamin-Ono equation, Differential Integral Equations, 4 (1991), 527-542.

[24]

G. Preciado and F. Soriano, On the Cauchy problem of a two-dimensional Benjamin-Ono equation, arXiv:1503.04290v1 [Math.AP] 14 Mar 2015. doi: 10.12732/ijam.v26i6.1.

[25]

J. C. Saut, Sur quelques gééalisations de l'éuation de Korteweg-de Vries, J. Math. Pures Appl., 58 (1979), 21-61.

[26]

T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, Regional Conference Series in Mathematics, Number 106, AMS, 2006. doi: 10.1090/cbms/106.

[1]

Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941

[2]

Jerry Bona, H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 27-45. doi: 10.3934/dcds.2004.11.27

[3]

Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15

[4]

Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663

[5]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[6]

Nakao Hayashi, Pavel Naumkin. On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 237-255. doi: 10.3934/dcds.2002.8.237

[7]

Kenta Ohi, Tatsuo Iguchi. A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1205-1240. doi: 10.3934/dcds.2009.23.1205

[8]

Boling Guo, Zhaohui Huo. The global attractor of the damped, forced generalized Korteweg de Vries-Benjamin-Ono equation in $L^2$. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 121-136. doi: 10.3934/dcds.2006.16.121

[9]

Lufang Mi, Kangkang Zhang. Invariant Tori for Benjamin-Ono Equation with Unbounded quasi-periodically forced Perturbation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 689-707. doi: 10.3934/dcds.2014.34.689

[10]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[11]

Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 449-483. doi: 10.3934/dcds.2017019

[12]

Luc Molinet, Francis Ribaud. Well-posedness in $ H^1 $ for generalized Benjamin-Ono equations on the circle. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1295-1311. doi: 10.3934/dcds.2009.23.1295

[13]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure & Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[14]

Anne-Sophie de Suzzoni. Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2905-2920. doi: 10.3934/dcds.2015.35.2905

[15]

Milena Stanislavova. On the global attractor for the damped Benjamin-Bona-Mahony equation. Conference Publications, 2005, 2005 (Special) : 824-832. doi: 10.3934/proc.2005.2005.824

[16]

M. S. Bruzón, M. L. Gandarias, J. C. Camacho. Classical and nonclassical symmetries and exact solutions for a generalized Benjamin equation. Conference Publications, 2015, 2015 (special) : 151-158. doi: 10.3934/proc.2015.0151

[17]

Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583

[18]

Jaime Angulo Pava, Borys Alvarez Samaniego. Existence and stability of periodic travelling-wavesolutions of the Benjamin equation. Communications on Pure & Applied Analysis, 2005, 4 (2) : 367-388. doi: 10.3934/cpaa.2005.4.367

[19]

C. H. Arthur Cheng, John M. Hong, Ying-Chieh Lin, Jiahong Wu, Juan-Ming Yuan. Well-posedness of the two-dimensional generalized Benjamin-Bona-Mahony equation on the upper half plane. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 763-779. doi: 10.3934/dcdsb.2016.21.763

[20]

Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (15)
  • HTML views (21)
  • Cited by (0)

[Back to Top]