• Previous Article
    Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator
  • CPAA Home
  • This Issue
  • Next Article
    Entire solutions in nonlocal monostable equations: Asymmetric case
May 2019, 18(3): 1023-1048. doi: 10.3934/cpaa.2019050

Uniqueness for Neumann problems for nonlinear elliptic equations

1. 

Dipartimento di Ingegneria, Università degli Studi di Napoli Parthenope, Centro Direzionale, Isola C4 80143 Napoli, Italy

2. 

Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS-Université de Rouen, Avenue de l'Université, BP.12 76801 Saint-Étienne-du-Rouvray, France

3. 

Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università degli Studi di Napoli Federico Ⅱ, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy

* Corresponding author

Received  October 2017 Revised  September 2018 Published  November 2018

In the present paper we prove uniqueness results for solutions to a class of Neumann boundary value problems whose prototype is
$\left\{ \begin{align} & -\text{div}({{(1+|\nabla u{{|}^{2}})}^{(p-2)/2}}\nabla u)-\text{div}(c(x)|u{{|}^{p-2}}u)=f\ \ \ \text{in}\ \Omega , \\ & \left( {{(1+|\nabla u{{|}^{2}})}^{(p-2)/2}}\nabla u+c(x)|u{{|}^{p-2}}u \right)\cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{n}=0\ \ \ \text{on}\ \partial \Omega , \\ \end{align} \right.$
where
$Ω$
is a bounded domain of
$\mathbb{R}^{N}$
,
$N≥ 2$
, with Lipschitz boundary,
$ 1 < p < N$
,
$\underline n$
is the outer unit normal to
$\partial Ω$
, the datum
$f$
belongs to
$L^{(p^{*})'}(Ω)$
or to
$L^{1}(Ω)$
and satisfies the compatibility condition
$∈t_Ω f \, dx = 0$
. Finally the coefficient
$c(x)$
belongs to an appropriate Lebesgue space.
Citation: Maria Francesca Betta, Olivier Guibé, Anna Mercaldo. Uniqueness for Neumann problems for nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1023-1048. doi: 10.3934/cpaa.2019050
References:
[1]

A. AlvinoA. CianchiV. G. Maz'ya and A. Mercaldo, Well-posed elliptic Neumann problems involving irregular data and domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1017-1054. doi: 10.1016/j.anihpc.2010.01.010.

[2]

A. Alvino and A. Mercaldo, Nonlinear elliptic problems with $L^1$ data: an approach via symmetrization methods, Mediterr. J. Math., 5 (2008), 173-185. doi: 10.1007/s00009-008-0142-5.

[3]

F. AndreuJ. M. MazónS. Segura de León and J. Toledo, Quasi-linear elliptic and parabolic equations in $L^1$ with nonlinear boundary conditions, Adv. Math. Sci. Appl., 7 (1997), 183-213.

[4]

M. Artola, Sur une classe de problémes paraboliques quasi-linéaires, Boll. Un. Mat. Ital. B (6), 5 (1986), 51-70.

[5]

G. BarlesG. Diaz and J. I. Diaz, Uniqueness and continuum of foliated solutions for a quasilinear elliptic equation with a non-Lipschitz nonlinearity, Comm. Partial Differential Equations, 17 (1992), 1037-1050. doi: 10.1080/03605309208820876.

[6]

M. Ben Cheikh Ali and O. Guibé, Nonlinear and non-coercive elliptic problems with integrable data, Adv. Math. Sci. Appl., 16 (2006), 275-297.

[7]

P. BénilanL. BoccardoT. GallouëtR. GariepyM. Pierre and J. L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22 (1995), 241-273.

[8]

M. F. BettaO. Guibé and A. Mercaldo, Neumann problems for nonlinear elliptic equations with $L^1$ data, J. Differential Equations, 259 (2015), 898-924. doi: 10.1016/j.jde.2015.02.031.

[9]

M. F. BettaA. MercaldoF. Murat and M. M. Porzio, Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum, C. R. Math. Acad. Sci. Paris, 334 (2002), 757-762. doi: 10.1016/S1631-073X(02)02338-5.

[10]

M. F. Betta, A. Mercaldo, F. Murat and M. M. Porzio, Existence of renormalized solutions to nonlinear elliptic equations with a lower-order term and right-hand side a measure, J. Math. Pures Appl. (9), 82 (2003), 90–124. Corrected reprint of J. Math. Pures Appl. (9), 8 (2002), 533–566. doi: 10.1016/S0021-7824(03)00006-0.

[11]

L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169. doi: 10.1016/0022-1236(89)90005-0.

[12]

L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations, 17 (1992), 641-655. doi: 10.1080/03605309208820857.

[13]

L. BoccardoT. Gallouët and F. Murat, Unicité de la solution de certaines équations elliptiques non linéaires, C. R. Acad. Sci. Paris S´er. I Math., 315 (1992), 1159-1164.

[14]

J. Chabrowski, On the Neumann problem with $L^1$ data, Colloq. Math., 107 (2007), 301-316. doi: 10.4064/cm107-2-10.

[15]

M. Chipot and G. Michaille, Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16 (1989), 137-166.

[16]

G. Dal MasoF. MuratL. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 741-808.

[17]

A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the $H$-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl. (4), 170 (1996), 207-240. doi: 10.1007/BF01758989.

[18]

A. DecarreauJ. Liang and J.-M. Rakotoson, Trace imbeddings for $T$-sets and application to Neumann-Dirichlet problems with measures included in the boundary data, Ann. Fac. Sci. Toulouse Math. (6), 5 (1996), 443-470.

[19]

J. Droniou, Solving convection-diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method, Adv. Differential Equations, 5 (2000), 1341-1396.

[20]

J. Droniou and J.-L. Vázquez, Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations, 34 (2009), 413-434. doi: 10.1007/s00526-008-0189-y.

[21]

V. Ferone and A. Mercaldo, A second order derivation formula for functions defined by integrals, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 549-554. doi: 10.1016/S0764-4442(98)85005-2.

[22]

V. Ferone and A. Mercaldo, Neumann problems and Steiner symmetrization, Comm. Partial Differential Equations, 30 (2005), 1537-1553. doi: 10.1080/03605300500299596.

[23]

O. Guibé and A. Mercaldo, Existence and stability results for renormalized solutions to noncoercive nonlinear elliptic equations with measure data, Potential Anal., 25 (2006), 223-258. doi: 10.1007/s11118-006-9011-7.

[24]

O. Guibé and A. Mercaldo, Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data, Trans. Amer. Math. Soc., 360 (2008), 643-669. doi: 10.1090/S0002-9947-07-04139-6.

[25]

J. Leray and J.-L. Lions, Quelques résulatats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107.

[26]

J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, 1969.

[27]

P. L. Lions and F. Murat, Sur les solutions renormalisées d'équations elliptiques non linéaires, In manuscript.

[28]

F. Murat, Equations elliptiques non linéaires avec second membre ${L}^1$ ou mesure, In Compte Rendus du 26ème Congrès d'Analyse Numérique, les Karellis, 1994.

[29]

A. Prignet, Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure, Ann. Fac. Sci. Toulouse Math. (6), 6 (1997), 297-318.

[30]

W. P. Ziemer, Weakly Differentiable Functions, volume 120 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. doi: 10.1007/978-1-4612-1015-3.

show all references

References:
[1]

A. AlvinoA. CianchiV. G. Maz'ya and A. Mercaldo, Well-posed elliptic Neumann problems involving irregular data and domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1017-1054. doi: 10.1016/j.anihpc.2010.01.010.

[2]

A. Alvino and A. Mercaldo, Nonlinear elliptic problems with $L^1$ data: an approach via symmetrization methods, Mediterr. J. Math., 5 (2008), 173-185. doi: 10.1007/s00009-008-0142-5.

[3]

F. AndreuJ. M. MazónS. Segura de León and J. Toledo, Quasi-linear elliptic and parabolic equations in $L^1$ with nonlinear boundary conditions, Adv. Math. Sci. Appl., 7 (1997), 183-213.

[4]

M. Artola, Sur une classe de problémes paraboliques quasi-linéaires, Boll. Un. Mat. Ital. B (6), 5 (1986), 51-70.

[5]

G. BarlesG. Diaz and J. I. Diaz, Uniqueness and continuum of foliated solutions for a quasilinear elliptic equation with a non-Lipschitz nonlinearity, Comm. Partial Differential Equations, 17 (1992), 1037-1050. doi: 10.1080/03605309208820876.

[6]

M. Ben Cheikh Ali and O. Guibé, Nonlinear and non-coercive elliptic problems with integrable data, Adv. Math. Sci. Appl., 16 (2006), 275-297.

[7]

P. BénilanL. BoccardoT. GallouëtR. GariepyM. Pierre and J. L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22 (1995), 241-273.

[8]

M. F. BettaO. Guibé and A. Mercaldo, Neumann problems for nonlinear elliptic equations with $L^1$ data, J. Differential Equations, 259 (2015), 898-924. doi: 10.1016/j.jde.2015.02.031.

[9]

M. F. BettaA. MercaldoF. Murat and M. M. Porzio, Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum, C. R. Math. Acad. Sci. Paris, 334 (2002), 757-762. doi: 10.1016/S1631-073X(02)02338-5.

[10]

M. F. Betta, A. Mercaldo, F. Murat and M. M. Porzio, Existence of renormalized solutions to nonlinear elliptic equations with a lower-order term and right-hand side a measure, J. Math. Pures Appl. (9), 82 (2003), 90–124. Corrected reprint of J. Math. Pures Appl. (9), 8 (2002), 533–566. doi: 10.1016/S0021-7824(03)00006-0.

[11]

L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169. doi: 10.1016/0022-1236(89)90005-0.

[12]

L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations, 17 (1992), 641-655. doi: 10.1080/03605309208820857.

[13]

L. BoccardoT. Gallouët and F. Murat, Unicité de la solution de certaines équations elliptiques non linéaires, C. R. Acad. Sci. Paris S´er. I Math., 315 (1992), 1159-1164.

[14]

J. Chabrowski, On the Neumann problem with $L^1$ data, Colloq. Math., 107 (2007), 301-316. doi: 10.4064/cm107-2-10.

[15]

M. Chipot and G. Michaille, Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16 (1989), 137-166.

[16]

G. Dal MasoF. MuratL. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 741-808.

[17]

A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the $H$-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl. (4), 170 (1996), 207-240. doi: 10.1007/BF01758989.

[18]

A. DecarreauJ. Liang and J.-M. Rakotoson, Trace imbeddings for $T$-sets and application to Neumann-Dirichlet problems with measures included in the boundary data, Ann. Fac. Sci. Toulouse Math. (6), 5 (1996), 443-470.

[19]

J. Droniou, Solving convection-diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method, Adv. Differential Equations, 5 (2000), 1341-1396.

[20]

J. Droniou and J.-L. Vázquez, Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations, 34 (2009), 413-434. doi: 10.1007/s00526-008-0189-y.

[21]

V. Ferone and A. Mercaldo, A second order derivation formula for functions defined by integrals, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 549-554. doi: 10.1016/S0764-4442(98)85005-2.

[22]

V. Ferone and A. Mercaldo, Neumann problems and Steiner symmetrization, Comm. Partial Differential Equations, 30 (2005), 1537-1553. doi: 10.1080/03605300500299596.

[23]

O. Guibé and A. Mercaldo, Existence and stability results for renormalized solutions to noncoercive nonlinear elliptic equations with measure data, Potential Anal., 25 (2006), 223-258. doi: 10.1007/s11118-006-9011-7.

[24]

O. Guibé and A. Mercaldo, Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data, Trans. Amer. Math. Soc., 360 (2008), 643-669. doi: 10.1090/S0002-9947-07-04139-6.

[25]

J. Leray and J.-L. Lions, Quelques résulatats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107.

[26]

J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, 1969.

[27]

P. L. Lions and F. Murat, Sur les solutions renormalisées d'équations elliptiques non linéaires, In manuscript.

[28]

F. Murat, Equations elliptiques non linéaires avec second membre ${L}^1$ ou mesure, In Compte Rendus du 26ème Congrès d'Analyse Numérique, les Karellis, 1994.

[29]

A. Prignet, Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure, Ann. Fac. Sci. Toulouse Math. (6), 6 (1997), 297-318.

[30]

W. P. Ziemer, Weakly Differentiable Functions, volume 120 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. doi: 10.1007/978-1-4612-1015-3.

[1]

Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293

[2]

Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828

[3]

Peiying Chen. Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations. Electronic Research Announcements, 2017, 24: 38-52. doi: 10.3934/era.2017.24.005

[4]

Monica Musso, Donato Passaseo. Multiple solutions of Neumann elliptic problems with critical nonlinearity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 301-320. doi: 10.3934/dcds.1999.5.301

[5]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[6]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Multiple solutions for nonlinear coercive Neumann problems. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1957-1974. doi: 10.3934/cpaa.2009.8.1957

[7]

Shouchuan Hu, Nikolaos S. Papageorgiou. Solutions of nonlinear nonhomogeneous Neumann and Dirichlet problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2889-2922. doi: 10.3934/cpaa.2013.12.2889

[8]

Leszek Gasiński, Nikolaos S. Papageorgiou. Multiple solutions for a class of nonlinear Neumann eigenvalue problems. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1491-1512. doi: 10.3934/cpaa.2014.13.1491

[9]

Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure & Applied Analysis, 2006, 5 (1) : 213-240. doi: 10.3934/cpaa.2006.5.213

[10]

Olivier Guibé, Anna Mercaldo. Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms. Communications on Pure & Applied Analysis, 2008, 7 (1) : 163-192. doi: 10.3934/cpaa.2008.7.163

[11]

Sabri Bensid, Jesús Ildefonso Díaz. Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1757-1778. doi: 10.3934/dcdsb.2017105

[12]

Wanwan Wang, Hongxia Zhang, Huyuan Chen. Remarks on weak solutions of fractional elliptic equations. Communications on Pure & Applied Analysis, 2016, 15 (2) : 335-340. doi: 10.3934/cpaa.2016.15.335

[13]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5003-5036. doi: 10.3934/dcds.2015.35.5003

[14]

Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543

[15]

M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián. Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights. Communications on Pure & Applied Analysis, 2004, 3 (4) : 653-662. doi: 10.3934/cpaa.2004.3.653

[16]

Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685

[17]

Robert Jensen, Andrzej Świech. Uniqueness and existence of maximal and minimal solutions of fully nonlinear elliptic PDE. Communications on Pure & Applied Analysis, 2005, 4 (1) : 199-207. doi: 10.3934/cpaa.2005.4.187

[18]

Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335

[19]

Gabriele Bonanno, Pasquale Candito, Roberto Livrea, Nikolaos S. Papageorgiou. Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1169-1188. doi: 10.3934/cpaa.2017057

[20]

Kunquan Lan, Wei Lin. Uniqueness of nonzero positive solutions of Laplacian elliptic equations arising in combustion theory. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 849-861. doi: 10.3934/dcdsb.2016.21.849

2017 Impact Factor: 0.884

Article outline

[Back to Top]