• Previous Article
    Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation
  • CPAA Home
  • This Issue
  • Next Article
    Fractal analysis of canard cycles with two breaking parameters and applications
March 2019, 18(2): 943-958. doi: 10.3934/cpaa.2019046

Semi-hyperbolic patches of solutions to the two-dimensional compressible magnetohydrodynamic equations

1. 

Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou, 310023, China

2. 

Department of Mathematics, Shanghai University, Shanghai, 200444, China

* Corresponding author

Received  April 2018 Revised  May 2018 Published  October 2018

Fund Project: Supported by NSF of China (11301326) and the grant of the first-class Discipline of Universities in Shanghai

We construct semi-hyperbolic patches of solutions, in which one family out of two families of wave characteristics start on sonic curves and end on transonic shock waves, to the two-dimensional (2D) compressible magnetohydrodynamic (MHD) equations. This type of flow patches appear frequently in transonic flow problems. In order to use the method of characteristic decomposition to construct such a flow patch, we also derive a group of characteristic decompositions for 2D self-similar MHD equations.

Citation: Jianjun Chen, Geng Lai. Semi-hyperbolic patches of solutions to the two-dimensional compressible magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2019, 18 (2) : 943-958. doi: 10.3934/cpaa.2019046
References:
[1]

H. Cabannes, Theoretical Magnetofluid Dynamics, Applied Mathematics and Mechanics, New York, 1970.

[2]

S. Canic and B. L. Keyfitz, Quasi-one-dimensional Riemann problems and their role in selfsimilar two-dimensional problems, Arch. Ration. Mech. Anal., 144 (1998), 233-258. doi: 10.1007/s002050050117.

[3]

G. Q. Chen and M. Feldman, Global solutions of shock reflection by large-angle wedges for potential flow, Ann. of Math. (2), 171 (2010), 1067-1182. doi: 10.4007/annals.2010.171.1067.

[4]

J. J. Chen, G. Lai, and W. C. Sheng, Characteristic decompositions and interaction of rarefaction waves to the two-dimensional compressible Euler equations in magnetohydrodynamics, submitted.

[5]

X. Chen and Y. X. Zheng, The interaction of rarefaction waves of the two-dimensional Euler equations, Indiana Univ. Math. J., 59 (2010), 231-256.

[6]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948.

[7]

V. Elling and T. P. Liu, Supersonic flow onto a solid wedge, Comm. Pure Appl. Math., 61 (2008), 1347-1448. doi: 10.1002/cpa.20231.

[8]

K. G. Guderley, Considerations on the structure of mixed subsonicsupersonic flow patterns, Air Material Command Tech. Report F-TR-2168-ND, ATI 22780, GS-AAF-Wright Field 39, U.S. Wright-Patterson Air Force Base, Dayton, OH, 1947.

[9]

Y. HuJ. Q. Li and W. C. Sheng, Degenerate Goursat-type boundary value problems arising from the study of two-dimensional isothermal Euler equations, Z. Angew. Math. Phys., 63 (2012), 1021-1046. doi: 10.1007/s00033-012-0203-2.

[10]

Y. B Hu and G. D. Wang, Semi-hyperbolic pathces of solutions to the two-dimensional nonlinear wave system for Chaplygin gases, J. Differential Equations, 257 (2014), 1567-1590. doi: 10.1016/j.jde.2014.05.020.

[11]

E. H. Kim and C. Tsikkou, Two dimensional Riemann problems for the nonlinear wave system: Rarefaction wave interactions, Discrete Contin. Dyn. Syst., 37 (2017), 6257-6289. doi: 10.3934/dcds.2017271.

[12]

G. Lai and W. C. Sheng, Centered wave bubbles with sonic boundary of pseudosteady Guderley Mach reflection configurations in gas dynamics, J. Math. Pures Appl., 104 (2015), 179-206. doi: 10.1016/j.matpur.2015.02.005.

[13]

G. Lai and W. C. Sheng, Two-dimensional centered wave flow patches to the Guderley Mach reflection configurations for steady flow in gas dynamics, J. Hyperbolic Differ. Equ., 13 (2016), 107-128. doi: 10.1142/S0219891616500028.

[14]

M. J. Li and Y. X. Zheng, Semi-hyperbolic patches of solutions of the two-dimensional Euler equations, Arch. Ration. Mech. Anal., 201 (2011), 1069-1096. doi: 10.1007/s00205-011-0410-6.

[15]

J. Q. LiZ. C. Yang and Y. X. Zheng, Characteristic decompositions and interaction of rarefaction waves of 2-D Euler equations, J. Differential Equations., 250 (2011), 782-798. doi: 10.1016/j.jde.2010.07.009.

[16]

J. Q. LiT. Zhang and Y. X. Zheng, Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations, Comm. Math. Phys., 267 (2006), 1-12. doi: 10.1007/s00220-006-0033-1.

[17]

J. Q. Li and Y. X. Zheng, Interaction of rarefaction waves of the two-dimensional self-similar Euler equations, Arch. Ration. Mech. Anal., 193 (2009), 623-657. doi: 10.1007/s00205-008-0140-6.

[18]

T. T. Li, Global Classical Solutions for Quasilinear Hyperbolic System, John Wiley and Sons, 1994.

[19]

T. T. Li and T. H. Qin, Physics and Partial Differential Equations (in Chinese), Higher Education Press, 2005.

[20]

T. T. Li and W. C. Yu, Boundary Value Problem for Quasilinear Hyperbolic Systems, Duke University, 1985.

[21]

D. Serre, Multi-dimensional shock interaction for a Chaplygin gas, Arch. Ration. Mech. Anal., 191 (2008), 539-577. doi: 10.1007/s00205-008-0110-z.

[22]

B. W. Skews and J. T. Ashworth, The physical nature of weak shock wave reflection, J. Fluid Mech., 542 (2005), 105-114. doi: 10.1017/S0022112005006543.

[23]

K. Song and Y. X. Zheng, Semi-hyperbolic patches of solutions of the pressure gradient system, Discrete Contin. Dyn. Syst., 24 (2009), 1365-1380. doi: 10.3934/dcds.2009.24.1365.

[24]

K. SongQ. Wang and Y. X. Zheng, The regularity of semihyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics, SIAM J. Math. Anal., 47 (2015), 2200-2219. doi: 10.1137/140964382.

[25]

A. M. Tesdall and J. K. Hunter, Self-similar solutions for weak shock reflection, SIAM J. Appl. Math., 63 (2002), 42-61. doi: 10.1137/S0036139901383826.

[26]

A. M. TesdallR. Sanders and B. L. Keyfitz, The triple point paradox for the nonlinear wave system, SIAM J. Appl. Math., 67 (2006), 321-336. doi: 10.1137/060660758.

[27]

A. M. TesdallR. Sanders and B. L. Keyfitz, Self-similar solutions for the triple point paradox in gasdynamics, SIAM J. Appl. Math.(2015), 68 (2008), 1360-1377. doi: 10.1137/070698567.

[28]

Q. Wang and K. Song, The regularity of sonic curves for the two-dimensional Riemann problems of the nonlinear wave system of Chaplygin gas, Discrete Contin. Dyn. Syst., 36 (2016), 1661-1675. doi: 10.3934/dcds.2016.36.1661.

[29]

A. ZakharianM. BrioJ. K. Hunter and G. Webb, The von Neumann paradox in weak shock reflection, J. Fluid Mech., 422 (2000), 193-205. doi: 10.1017/S0022112000001609.

[30]

T. Y. Zhang and X. Y. Zheng, Sonic-supersonic solutions for the steady Euler equations, Indiana Univ. Math. J., 63 (2014), 1785-1817.

[31]

T. Y. Zhang and X. Y. Zheng, The structure of solutions near a sonic line in gas dynamics via the pressure gradient equation, J. Math. Anal. Appl., 443 (2016), 39-56. doi: 10.1016/j.jmaa.2016.04.002.

[32]

T. Zhang and X. Y. Zheng, Conjecture on the structure of solution of the Riemann problem for two-dimensional gas dynamics systems, SIAM J. Appl. Math., 21 (1990), 593-630. doi: 10.1137/0521032.

[33]

Y. X. Zheng, Absorption of characteristics by sonic curve of the two-dimensional Euler equations, Discrete Contin. Dyn. Syst., 23 (2009), 605-616. doi: 10.3934/dcds.2009.23.605.

[34]

Y. X. Zheng, Systems of Conservation Laws: 2D Riemann Problems, 38 PNLDE, Bikhäuser, Boston, 2001. doi: 10.1007/978-1-4612-0141-0.

show all references

References:
[1]

H. Cabannes, Theoretical Magnetofluid Dynamics, Applied Mathematics and Mechanics, New York, 1970.

[2]

S. Canic and B. L. Keyfitz, Quasi-one-dimensional Riemann problems and their role in selfsimilar two-dimensional problems, Arch. Ration. Mech. Anal., 144 (1998), 233-258. doi: 10.1007/s002050050117.

[3]

G. Q. Chen and M. Feldman, Global solutions of shock reflection by large-angle wedges for potential flow, Ann. of Math. (2), 171 (2010), 1067-1182. doi: 10.4007/annals.2010.171.1067.

[4]

J. J. Chen, G. Lai, and W. C. Sheng, Characteristic decompositions and interaction of rarefaction waves to the two-dimensional compressible Euler equations in magnetohydrodynamics, submitted.

[5]

X. Chen and Y. X. Zheng, The interaction of rarefaction waves of the two-dimensional Euler equations, Indiana Univ. Math. J., 59 (2010), 231-256.

[6]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948.

[7]

V. Elling and T. P. Liu, Supersonic flow onto a solid wedge, Comm. Pure Appl. Math., 61 (2008), 1347-1448. doi: 10.1002/cpa.20231.

[8]

K. G. Guderley, Considerations on the structure of mixed subsonicsupersonic flow patterns, Air Material Command Tech. Report F-TR-2168-ND, ATI 22780, GS-AAF-Wright Field 39, U.S. Wright-Patterson Air Force Base, Dayton, OH, 1947.

[9]

Y. HuJ. Q. Li and W. C. Sheng, Degenerate Goursat-type boundary value problems arising from the study of two-dimensional isothermal Euler equations, Z. Angew. Math. Phys., 63 (2012), 1021-1046. doi: 10.1007/s00033-012-0203-2.

[10]

Y. B Hu and G. D. Wang, Semi-hyperbolic pathces of solutions to the two-dimensional nonlinear wave system for Chaplygin gases, J. Differential Equations, 257 (2014), 1567-1590. doi: 10.1016/j.jde.2014.05.020.

[11]

E. H. Kim and C. Tsikkou, Two dimensional Riemann problems for the nonlinear wave system: Rarefaction wave interactions, Discrete Contin. Dyn. Syst., 37 (2017), 6257-6289. doi: 10.3934/dcds.2017271.

[12]

G. Lai and W. C. Sheng, Centered wave bubbles with sonic boundary of pseudosteady Guderley Mach reflection configurations in gas dynamics, J. Math. Pures Appl., 104 (2015), 179-206. doi: 10.1016/j.matpur.2015.02.005.

[13]

G. Lai and W. C. Sheng, Two-dimensional centered wave flow patches to the Guderley Mach reflection configurations for steady flow in gas dynamics, J. Hyperbolic Differ. Equ., 13 (2016), 107-128. doi: 10.1142/S0219891616500028.

[14]

M. J. Li and Y. X. Zheng, Semi-hyperbolic patches of solutions of the two-dimensional Euler equations, Arch. Ration. Mech. Anal., 201 (2011), 1069-1096. doi: 10.1007/s00205-011-0410-6.

[15]

J. Q. LiZ. C. Yang and Y. X. Zheng, Characteristic decompositions and interaction of rarefaction waves of 2-D Euler equations, J. Differential Equations., 250 (2011), 782-798. doi: 10.1016/j.jde.2010.07.009.

[16]

J. Q. LiT. Zhang and Y. X. Zheng, Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations, Comm. Math. Phys., 267 (2006), 1-12. doi: 10.1007/s00220-006-0033-1.

[17]

J. Q. Li and Y. X. Zheng, Interaction of rarefaction waves of the two-dimensional self-similar Euler equations, Arch. Ration. Mech. Anal., 193 (2009), 623-657. doi: 10.1007/s00205-008-0140-6.

[18]

T. T. Li, Global Classical Solutions for Quasilinear Hyperbolic System, John Wiley and Sons, 1994.

[19]

T. T. Li and T. H. Qin, Physics and Partial Differential Equations (in Chinese), Higher Education Press, 2005.

[20]

T. T. Li and W. C. Yu, Boundary Value Problem for Quasilinear Hyperbolic Systems, Duke University, 1985.

[21]

D. Serre, Multi-dimensional shock interaction for a Chaplygin gas, Arch. Ration. Mech. Anal., 191 (2008), 539-577. doi: 10.1007/s00205-008-0110-z.

[22]

B. W. Skews and J. T. Ashworth, The physical nature of weak shock wave reflection, J. Fluid Mech., 542 (2005), 105-114. doi: 10.1017/S0022112005006543.

[23]

K. Song and Y. X. Zheng, Semi-hyperbolic patches of solutions of the pressure gradient system, Discrete Contin. Dyn. Syst., 24 (2009), 1365-1380. doi: 10.3934/dcds.2009.24.1365.

[24]

K. SongQ. Wang and Y. X. Zheng, The regularity of semihyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics, SIAM J. Math. Anal., 47 (2015), 2200-2219. doi: 10.1137/140964382.

[25]

A. M. Tesdall and J. K. Hunter, Self-similar solutions for weak shock reflection, SIAM J. Appl. Math., 63 (2002), 42-61. doi: 10.1137/S0036139901383826.

[26]

A. M. TesdallR. Sanders and B. L. Keyfitz, The triple point paradox for the nonlinear wave system, SIAM J. Appl. Math., 67 (2006), 321-336. doi: 10.1137/060660758.

[27]

A. M. TesdallR. Sanders and B. L. Keyfitz, Self-similar solutions for the triple point paradox in gasdynamics, SIAM J. Appl. Math.(2015), 68 (2008), 1360-1377. doi: 10.1137/070698567.

[28]

Q. Wang and K. Song, The regularity of sonic curves for the two-dimensional Riemann problems of the nonlinear wave system of Chaplygin gas, Discrete Contin. Dyn. Syst., 36 (2016), 1661-1675. doi: 10.3934/dcds.2016.36.1661.

[29]

A. ZakharianM. BrioJ. K. Hunter and G. Webb, The von Neumann paradox in weak shock reflection, J. Fluid Mech., 422 (2000), 193-205. doi: 10.1017/S0022112000001609.

[30]

T. Y. Zhang and X. Y. Zheng, Sonic-supersonic solutions for the steady Euler equations, Indiana Univ. Math. J., 63 (2014), 1785-1817.

[31]

T. Y. Zhang and X. Y. Zheng, The structure of solutions near a sonic line in gas dynamics via the pressure gradient equation, J. Math. Anal. Appl., 443 (2016), 39-56. doi: 10.1016/j.jmaa.2016.04.002.

[32]

T. Zhang and X. Y. Zheng, Conjecture on the structure of solution of the Riemann problem for two-dimensional gas dynamics systems, SIAM J. Appl. Math., 21 (1990), 593-630. doi: 10.1137/0521032.

[33]

Y. X. Zheng, Absorption of characteristics by sonic curve of the two-dimensional Euler equations, Discrete Contin. Dyn. Syst., 23 (2009), 605-616. doi: 10.3934/dcds.2009.23.605.

[34]

Y. X. Zheng, Systems of Conservation Laws: 2D Riemann Problems, 38 PNLDE, Bikhäuser, Boston, 2001. doi: 10.1007/978-1-4612-0141-0.

Figure 1.  Pseudosonic curve. (Ⅰ) Keldysh type; (Ⅱ) Tricomi type
Figure 2.  A semi-hyperbolic patch
Figure 3.  Left: small Goursat problem; right: global solution
[1]

Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002

[2]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

[3]

F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91

[4]

Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003

[5]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[6]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[7]

Meiyue Jiang, Juncheng Wei. $2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 785-803. doi: 10.3934/dcds.2016.36.785

[8]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[9]

Dongho Chae, Kyungkeun Kang, Jihoon Lee. Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1181-1193. doi: 10.3934/dcds.2009.25.1181

[10]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[11]

Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471

[12]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[13]

Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323

[14]

Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198

[15]

Anna Chiara Lai, Paola Loreti. Self-similar control systems and applications to zygodactyl bird's foot. Networks & Heterogeneous Media, 2015, 10 (2) : 401-419. doi: 10.3934/nhm.2015.10.401

[16]

D. G. Aronson. Self-similar focusing in porous media: An explicit calculation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1685-1691. doi: 10.3934/dcdsb.2012.17.1685

[17]

G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131

[18]

Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks & Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857

[19]

Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897

[20]

Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313

2017 Impact Factor: 0.884

Article outline

Figures and Tables

[Back to Top]