• Previous Article
    Weak solutions to stationary equations of heat transfer in a magnetic fluid
  • CPAA Home
  • This Issue
  • Next Article
    Compressible viscous flows in a symmetric domain with complete slip boundary: The nonlinear stability of uniformly rotating states with small angular velocities
March 2019, 18(2): 735-750. doi: 10.3934/cpaa.2019036

Steady flows of an Oldroyd fluid with threshold slip

Department of Applied Mathematics, Informatics and Mechanics, Voronezh State University, Voronezh, 394018, Russia

Received  February 2018 Revised  May 2018 Published  October 2018

Fund Project: This work was supported by the Russian Foundation for Basic Research, project no. 16-31- 00182 mol_a

We consider a mathematical model that describes 3D steady flows of an incompressible viscoelastic fluid of Oldroyd type in a bounded domain under mixed boundary conditions, including a threshold-slip boundary condition. Using the concept of weak solutions, we reduce the original slip problem to a coupled system of variational inequalities and equations for the velocity field and stresses. For arbitrary large data (forcing and boundary data) and suitable material constants, we prove the existence of weak solutions and establish some of their properties.

Citation: Evgenii S. Baranovskii. Steady flows of an Oldroyd fluid with threshold slip. Communications on Pure & Applied Analysis, 2019, 18 (2) : 735-750. doi: 10.3934/cpaa.2019036
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2$ ^{nd}$ edition, Elsevier/Academic Press, Amsterdam, 2003.

[2]

Yu. Ya. Agranovich and P. E. Sobolevskii, Motion of nonlinear visco-elastic fluid, Nonlinear Anal., 32 (1998), 755-760. doi: 10.1016/S0362-546X(97)00519-1.

[3]

M. A. Artemov and E. S. Baranovskii, Mixed boundary-value problems for motion equations of a viscoelastic medium, Electron. J. Differ. Equ., 2015 (2015), Article No. 252.

[4]

E. S. Baranovskii, On steady motion of viscoelastic fluid of Oldroyd type, Sb. Math., 205 (2014), 763-776. doi: 10.1070/SM2014v205n06ABEH004397.

[5]

E. S. Baranovskii, Optimal control for steady flows of the Jeffreys fluids with slip boundary condition, J. Appl. Ind. Math., 8 (2014), 168-176. doi: 10.1134/S1990478914020033.

[6]

E. S. Baranovskii and M. A. Artemov, Global existence results for Oldroyd fluids with wall slip, Acta Appl. Math., 147 (2017), 197-210. doi: 10.1007/s10440-016-0076-z.

[7]

E. S. Baranovskii, On weak solutions to evolution equations of viscoelastic fluid flows, J. Appl. Ind. Math., 11 (2017), 174-184. doi: 10.1134/S199047891702003X.

[8]

E. S. Baranovskii, On flows of viscoelastic fluids under threshold-slip boundary conditions J. Phys.: Conf. Ser., 973 (2018), Article ID 012051. doi: 10.1088/1742-6596/973/1/012051.

[9]

O. Bejaoui and M. Majdoub, Global weak solutions for some Oldroyd models, J. Differ. Equ., 254 (2013), 660-685. doi: 10.1016/j.jde.2012.09.010.

[10]

S. D. Besbes and C. Guillopé, Non-isothermal flows of viscoelastic incompressible fluids, Nonlinear Anal., 44 (2001), 919-942. doi: 10.1016/S0362-546X(99)00315-6.

[11]

H. Brezis, Equations et inéquations non linéaires dans les espaces en dualité, Ann. Inst. Fourier (Grenoble), 18 (1968), 115-175. doi: 10.5802/aif.280.

[12]

J.-Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001), 84-112. doi: 10.1137/S0036141099359317.

[13]

Q. Chen and C. Miao, Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces, Nonlinear Anal., 68 (2008), 1928-1939. doi: 10.1016/j.na.2007.01.042.

[14]

L. Chupin, Some theoretical results concerning diphasic viscoelastic flows of the Oldroyd kind, Adv. Differ. Equ., 9 (2004), 1039-1078.

[15]

T. M. Elgindi and J. Liu, Global wellposedness to the generalized Oldroyd type models in $ R^3 $, J. Differ. Equ., 259 (2015), 1958-1966. doi: 10.1016/j.jde.2015.03.026.

[16]

D. FangM. Hieber and R. Zi, Global existence results for Oldroyd-B fluids in exterior domains: the case of non-small coupling parameters, Math. Ann., 357 (2013), 687-709. doi: 10.1007/s00208-013-0914-5.

[17]

D. Fang and R. Zi, Global solutions to the Oldroyd-B model with a class of large initial data, SIAM J. Math. Anal., 48 (2016), 1054-1084. doi: 10.1137/15M1037020.

[18]

E. Fernández-CaraF. Guillén and R. Ortega, Some theoretical results concerning non Newtonian fluids of the Oldroyd kind, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 26 (1998), 1-29.

[19]

H. Fujita, A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions, RIMS Kokyuroku, 888 (1994), 199-216.

[20]

C. Guillopé and J. C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal., 15 (1990), 849-869. doi: 10.1016/0362-546X(90)90097-Z.

[21]

L. He and L. Xi, Global well-posedness for viscoelastic fluid system in bounded domains, SIAM J. Math. Anal., 42 (2010), 2610-2625. doi: 10.1137/10078503X.

[22]

M. HieberY. Naito and Y. Shibata, Global existence results for Oldroyd-B fluids in exterior domains, J. Differ. Equ., 252 (2012), 2617-2629. doi: 10.1016/j.jde.2011.09.001.

[23]

T. Kashiwabara, On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type, J. Differ. Equ., 254 (2013), 756-778. doi: 10.1016/j.jde.2012.09.015.

[24]

C. Le Roux and A. Tani, Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions, Math. Methods Appl. Sci., 30 (2007), 595-624. doi: 10.1002/mma.802.

[25]

C. Le Roux, On flows of viscoelastic fluids of Oldroyd type with wall slip, J. Math. Fluid Mech., 16 (2014), 335-350. doi: 10.1007/s00021-013-0159-9.

[26]

Z. LeiC. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188 (2008), 371-398. doi: 10.1007/s00205-007-0089-x.

[27]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969.

[28]

P. L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chin. Ann. Math. Ser. B, 21 (2000), 131-146. doi: 10.1142/S0252959900000170.

[29]

V. G. Litvinov, Motion of A Nonlinearly Viscous Fluid, Nauka, Moscow, 1982.

[30]

S. Maryani, Global well-posedness for free boundary problem of the Oldroyd-B model fluid flow, Math. Methods Appl. Sci., 39 (2016), 2202-2219. doi: 10.1002/mma.3634.

[31]

J. T. Oden and N. Kikuchi, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1988. doi: 10.1137/1.9781611970845.

[32]

J. G. Oldroyd, On the formulation of rheological equations of state, Proc. R. Soc. Lond. Ser. A, 200 (1950), 523-541. doi: 10.1098/rspa.1950.0035.

[33]

J. G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids, Proc. R. Soc. Lond. Ser. A, 245 (1958), 278-297. doi: 10.1098/rspa.1958.0083.

[34]

K. R. Rajagopal, On some unresolved issues in non-linear fluid dynamics, Russian Math. Surveys, 58 (2003), 319-330. doi: 10.1070/RM2003v058n02ABEH000612.

[35]

M. Renardy, Existence of slow steady flows of viscoelastic fluids with differential constitutive equations, Z. Angew. Math. Mech., 65 (1985), 449-451. doi: 10.1002/zamm.19850650919.

[36]

M. Renardy and R. Rogers, An Introduction to Partial Differential Equations, 2$ ^{nd} $ edition, Springer-Verlag, New York, 2004.

[37]

J.-C. Saut, Lectures on the mathematical theory of viscoelastic fluids, in Lectures on the analysis of nonlinear partial differential equations. Part 3 (eds. F. Lin and P. Zhang), Int. Press, Somerville, MA, (2013), 325-393.

[38]

C. Truesdell, A First Course in Rational Continuum Mechanics, Academic Press, New York, 1977.

[39]

E. M. Turganbaev, Initial-boundary value problems for the equations of a viscoelastic fluid of Oldroyd type, Sib. Math. J., 36 (1995), 389-403. doi: 10.1007/BF02110162.

[40]

D. A. Vorotnikov, On the existence of weak stationary solutions of a boundary value problem in the Jeffreys model of the motion of a viscoelastic medium, Russian Math. (Iz. VUZ), 48 (2004), 10-14.

[41]

Z. Ye and X. Xu, Global regularity for the 2D Oldroyd-B model in the corotational case, Math. Methods Appl. Sci., 39 (2016), 3866-3879. doi: 10.1002/mma.3834.

[42]

V. G. Zvyagin and D. A. Vorotnikov, Approximating-topological methods in some problems of hydrodynamics, J. Fixed Point Theory Appl., 3 (2008), 23-49. doi: 10.1007/s11784-008-0056-7.

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2$ ^{nd}$ edition, Elsevier/Academic Press, Amsterdam, 2003.

[2]

Yu. Ya. Agranovich and P. E. Sobolevskii, Motion of nonlinear visco-elastic fluid, Nonlinear Anal., 32 (1998), 755-760. doi: 10.1016/S0362-546X(97)00519-1.

[3]

M. A. Artemov and E. S. Baranovskii, Mixed boundary-value problems for motion equations of a viscoelastic medium, Electron. J. Differ. Equ., 2015 (2015), Article No. 252.

[4]

E. S. Baranovskii, On steady motion of viscoelastic fluid of Oldroyd type, Sb. Math., 205 (2014), 763-776. doi: 10.1070/SM2014v205n06ABEH004397.

[5]

E. S. Baranovskii, Optimal control for steady flows of the Jeffreys fluids with slip boundary condition, J. Appl. Ind. Math., 8 (2014), 168-176. doi: 10.1134/S1990478914020033.

[6]

E. S. Baranovskii and M. A. Artemov, Global existence results for Oldroyd fluids with wall slip, Acta Appl. Math., 147 (2017), 197-210. doi: 10.1007/s10440-016-0076-z.

[7]

E. S. Baranovskii, On weak solutions to evolution equations of viscoelastic fluid flows, J. Appl. Ind. Math., 11 (2017), 174-184. doi: 10.1134/S199047891702003X.

[8]

E. S. Baranovskii, On flows of viscoelastic fluids under threshold-slip boundary conditions J. Phys.: Conf. Ser., 973 (2018), Article ID 012051. doi: 10.1088/1742-6596/973/1/012051.

[9]

O. Bejaoui and M. Majdoub, Global weak solutions for some Oldroyd models, J. Differ. Equ., 254 (2013), 660-685. doi: 10.1016/j.jde.2012.09.010.

[10]

S. D. Besbes and C. Guillopé, Non-isothermal flows of viscoelastic incompressible fluids, Nonlinear Anal., 44 (2001), 919-942. doi: 10.1016/S0362-546X(99)00315-6.

[11]

H. Brezis, Equations et inéquations non linéaires dans les espaces en dualité, Ann. Inst. Fourier (Grenoble), 18 (1968), 115-175. doi: 10.5802/aif.280.

[12]

J.-Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001), 84-112. doi: 10.1137/S0036141099359317.

[13]

Q. Chen and C. Miao, Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces, Nonlinear Anal., 68 (2008), 1928-1939. doi: 10.1016/j.na.2007.01.042.

[14]

L. Chupin, Some theoretical results concerning diphasic viscoelastic flows of the Oldroyd kind, Adv. Differ. Equ., 9 (2004), 1039-1078.

[15]

T. M. Elgindi and J. Liu, Global wellposedness to the generalized Oldroyd type models in $ R^3 $, J. Differ. Equ., 259 (2015), 1958-1966. doi: 10.1016/j.jde.2015.03.026.

[16]

D. FangM. Hieber and R. Zi, Global existence results for Oldroyd-B fluids in exterior domains: the case of non-small coupling parameters, Math. Ann., 357 (2013), 687-709. doi: 10.1007/s00208-013-0914-5.

[17]

D. Fang and R. Zi, Global solutions to the Oldroyd-B model with a class of large initial data, SIAM J. Math. Anal., 48 (2016), 1054-1084. doi: 10.1137/15M1037020.

[18]

E. Fernández-CaraF. Guillén and R. Ortega, Some theoretical results concerning non Newtonian fluids of the Oldroyd kind, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 26 (1998), 1-29.

[19]

H. Fujita, A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions, RIMS Kokyuroku, 888 (1994), 199-216.

[20]

C. Guillopé and J. C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal., 15 (1990), 849-869. doi: 10.1016/0362-546X(90)90097-Z.

[21]

L. He and L. Xi, Global well-posedness for viscoelastic fluid system in bounded domains, SIAM J. Math. Anal., 42 (2010), 2610-2625. doi: 10.1137/10078503X.

[22]

M. HieberY. Naito and Y. Shibata, Global existence results for Oldroyd-B fluids in exterior domains, J. Differ. Equ., 252 (2012), 2617-2629. doi: 10.1016/j.jde.2011.09.001.

[23]

T. Kashiwabara, On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type, J. Differ. Equ., 254 (2013), 756-778. doi: 10.1016/j.jde.2012.09.015.

[24]

C. Le Roux and A. Tani, Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions, Math. Methods Appl. Sci., 30 (2007), 595-624. doi: 10.1002/mma.802.

[25]

C. Le Roux, On flows of viscoelastic fluids of Oldroyd type with wall slip, J. Math. Fluid Mech., 16 (2014), 335-350. doi: 10.1007/s00021-013-0159-9.

[26]

Z. LeiC. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188 (2008), 371-398. doi: 10.1007/s00205-007-0089-x.

[27]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969.

[28]

P. L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chin. Ann. Math. Ser. B, 21 (2000), 131-146. doi: 10.1142/S0252959900000170.

[29]

V. G. Litvinov, Motion of A Nonlinearly Viscous Fluid, Nauka, Moscow, 1982.

[30]

S. Maryani, Global well-posedness for free boundary problem of the Oldroyd-B model fluid flow, Math. Methods Appl. Sci., 39 (2016), 2202-2219. doi: 10.1002/mma.3634.

[31]

J. T. Oden and N. Kikuchi, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1988. doi: 10.1137/1.9781611970845.

[32]

J. G. Oldroyd, On the formulation of rheological equations of state, Proc. R. Soc. Lond. Ser. A, 200 (1950), 523-541. doi: 10.1098/rspa.1950.0035.

[33]

J. G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids, Proc. R. Soc. Lond. Ser. A, 245 (1958), 278-297. doi: 10.1098/rspa.1958.0083.

[34]

K. R. Rajagopal, On some unresolved issues in non-linear fluid dynamics, Russian Math. Surveys, 58 (2003), 319-330. doi: 10.1070/RM2003v058n02ABEH000612.

[35]

M. Renardy, Existence of slow steady flows of viscoelastic fluids with differential constitutive equations, Z. Angew. Math. Mech., 65 (1985), 449-451. doi: 10.1002/zamm.19850650919.

[36]

M. Renardy and R. Rogers, An Introduction to Partial Differential Equations, 2$ ^{nd} $ edition, Springer-Verlag, New York, 2004.

[37]

J.-C. Saut, Lectures on the mathematical theory of viscoelastic fluids, in Lectures on the analysis of nonlinear partial differential equations. Part 3 (eds. F. Lin and P. Zhang), Int. Press, Somerville, MA, (2013), 325-393.

[38]

C. Truesdell, A First Course in Rational Continuum Mechanics, Academic Press, New York, 1977.

[39]

E. M. Turganbaev, Initial-boundary value problems for the equations of a viscoelastic fluid of Oldroyd type, Sib. Math. J., 36 (1995), 389-403. doi: 10.1007/BF02110162.

[40]

D. A. Vorotnikov, On the existence of weak stationary solutions of a boundary value problem in the Jeffreys model of the motion of a viscoelastic medium, Russian Math. (Iz. VUZ), 48 (2004), 10-14.

[41]

Z. Ye and X. Xu, Global regularity for the 2D Oldroyd-B model in the corotational case, Math. Methods Appl. Sci., 39 (2016), 3866-3879. doi: 10.1002/mma.3834.

[42]

V. G. Zvyagin and D. A. Vorotnikov, Approximating-topological methods in some problems of hydrodynamics, J. Fixed Point Theory Appl., 3 (2008), 23-49. doi: 10.1007/s11784-008-0056-7.

[1]

Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763

[2]

A. C. Eberhard, J-P. Crouzeix. Existence of closed graph, maximal, cyclic pseudo-monotone relations and revealed preference theory. Journal of Industrial & Management Optimization, 2007, 3 (2) : 233-255. doi: 10.3934/jimo.2007.3.233

[3]

Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[4]

Yurii Nesterov, Laura Scrimali. Solving strongly monotone variational and quasi-variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1383-1396. doi: 10.3934/dcds.2011.31.1383

[5]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[6]

Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657

[7]

G. Idone, A. Maugeri. Variational inequalities and a transport planning for an elastic and continuum model. Journal of Industrial & Management Optimization, 2005, 1 (1) : 81-86. doi: 10.3934/jimo.2005.1.81

[8]

Colette Guillopé, Abdelilah Hakim, Raafat Talhouk. Existence of steady flows of slightly compressible viscoelastic fluids of White-Metzner type around an obstacle. Communications on Pure & Applied Analysis, 2005, 4 (1) : 23-43. doi: 10.3934/cpaa.2005.4.23

[9]

Daoyuan Fang, Ting Zhang, Ruizhao Zi. Dispersive effects of the incompressible viscoelastic fluids. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5261-5295. doi: 10.3934/dcds.2018233

[10]

Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551

[11]

Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711

[12]

Matthias Hieber. Remarks on the theory of Oldroyd-B fluids in exterior domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1307-1313. doi: 10.3934/dcdss.2013.6.1307

[13]

Kota Kumazaki, Masahiro Kubo. Variational inequalities for a non-isothermal phase field model. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 409-421. doi: 10.3934/dcdss.2011.4.409

[14]

Konstantina Trivisa. Global existence and asymptotic analysis of solutions to a model for the dynamic combustion of compressible fluids. Conference Publications, 2003, 2003 (Special) : 852-863. doi: 10.3934/proc.2003.2003.852

[15]

Claude-Michel Brauner, Michael L. Frankel, Josephus Hulshof, Alessandra Lunardi, G. Sivashinsky. On the κ - θ model of cellular flames: Existence in the large and asymptotics. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 27-39. doi: 10.3934/dcdss.2008.1.27

[16]

Yaqing Liu, Liancun Zheng. Second-order slip flow of a generalized Oldroyd-B fluid through porous medium. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2031-2046. doi: 10.3934/dcdss.2016083

[17]

Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks & Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181

[18]

Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069

[19]

Mathieu Desbrun, Evan S. Gawlik, François Gay-Balmaz, Vladimir Zeitlin. Variational discretization for rotating stratified fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 477-509. doi: 10.3934/dcds.2014.34.477

[20]

W. G. Litvinov. Problem on stationary flow of electrorheological fluids at the generalized conditions of slip on the boundary. Communications on Pure & Applied Analysis, 2007, 6 (1) : 247-277. doi: 10.3934/cpaa.2007.6.247

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (25)
  • HTML views (131)
  • Cited by (0)

Other articles
by authors

[Back to Top]