March 2019, 18(2): 663-688. doi: 10.3934/cpaa.2019033

Infinite energy solutions for the (3+1)-dimensional Yang-Mills equation in Lorenz gauge

Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany

Received  December 2017 Revised  May 2018 Published  October 2018

We prove that the Yang-Mills equation in Lorenz gauge in the (3+1)-dimensional case is locally well-posed for data of the gauge potential in $H^s$ and the curvature in $H^r$, where $s >\frac{5}{7}$ and $r > -\frac{1}{7}$, respectively. This improves a result by Tesfahun [16]. The proof is based on the fundamental results of Klainerman-Selberg [6] and on the null structure of most of the nonlinear terms detected by Selberg-Tesfahun [14] and Tesfahun [16].

Citation: Hartmut Pecher. Infinite energy solutions for the (3+1)-dimensional Yang-Mills equation in Lorenz gauge. Communications on Pure & Applied Analysis, 2019, 18 (2) : 663-688. doi: 10.3934/cpaa.2019033
References:
[1]

P. d'AnconaD. Foschi and S. Selberg, Atlas of products for wave-Sobolev spaces on $\mathbb{R}^{1+3}$, Trans. Amer. Math. Soc., 364 (2012), 31-63. doi: 10.1090/S0002-9947-2011-05250-5.

[2]

P. d'AnconaD. Foschi and S. Selberg, Null structure and almost optimal local well-posedness of the Maxwell-Dirac system, Amer. J. Math., 132 (2010), 771-839. doi: 10.1353/ajm.0.0118.

[3]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 60-68. doi: 10.1006/jfan.1995.1119.

[4]

S. Klainerman and M. Machedon, Finite energy solutions of the Yang-Mills equations in ${\mathbb R}^{3+1}$, Ann. of Math., 142 (1995), 39-119. doi: 10.2307/2118611.

[5]

S. Klainerman and M. Machedon (Appendices by J. Bougain and D. Tataru), Remark on Strichartz-type inequalities, Int. Math. Res. Not. IMRN, 5 (1996), 201-220. doi: 10.1155/S1073792896000153.

[6]

S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations, Commun. Contemp. Math., 4 (2002), 223-295. doi: 10.1142/S0219199702000634.

[7]

S. Klainerman and D. Tataru, On the optimal local regularity for the Yang-Mills equations in $\mathbb{R}^{4+1}$, J. Amer. Math. Soc., 12 (1999), 93-116. doi: 10.1090/S0894-0347-99-00282-9.

[8]

J. Krieger and J. Sterbenz, Global regularity for the Yang-Mills equations on high dimensonal Minkowski space, Mem. Amer. Math. Soc., 223 (2013), No. 1047 doi: 10.1090/S0065-9266-2012-00566-1.

[9]

J. Krieger and D. Tataru, Global well-posedness for the Yang-Mills equations in 4+1 dimensions. Small energy, Ann. of Math., 185 (2017), 831-893. doi: 10.4007/annals.2017.185.3.3.

[10]

S. Oh, Gauge choice for the Yang-Mills equations using the Yang-Mills heat flow and local well-posedness in H1, J. Hyperbolic Differ. Equ., 11 (2014), 1-108. doi: 10.1142/S0219891614500015.

[11]

S. Oh, Finite energy global well-posedness of the Yang-Mills equations on $\mathbb{R}^{1+3}$: an approach using the Yang-Mills heat flow, Duke Math. J., 164 (2015), 1669-1732. doi: 10.1215/00127094-3119953.

[12]

H. Pecher, Local well-posedness for the (n+1)-dimensional Yang-Mills and Yang-Mills-Higgs system in temporal gauge, NoDEA Nonlinear Differential Equations Appl., 23 (2016), 23-40. doi: 10.1007/s00030-016-0395-9.

[13]

S. Selberg and A. Tesfahun, Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Comm. Partial Differential Equations, 35 (2010), 10290-1057. doi: 10.1080/03605301003717100.

[14]

S. Selberg and A. Tesfahun, Null structure and local well-posedness in the energy class for the Yang-Mills equations in Lorenz gauge, J. Eur. Math. Soc. (JEMS), 18 (2016), 1729-1752. doi: 10.4171/JEMS/627.

[15]

T. Tao, Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm, J. Differential Equations, 189 (2003), 366-382. doi: 10.1016/S0022-0396(02)00177-8.

[16]

A. Tesfahun, Local well-posedness of Yang-Mills equations in Lorenz gauge below the energy norm, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 849-875. doi: 10.1007/s00030-014-0306-x.

show all references

References:
[1]

P. d'AnconaD. Foschi and S. Selberg, Atlas of products for wave-Sobolev spaces on $\mathbb{R}^{1+3}$, Trans. Amer. Math. Soc., 364 (2012), 31-63. doi: 10.1090/S0002-9947-2011-05250-5.

[2]

P. d'AnconaD. Foschi and S. Selberg, Null structure and almost optimal local well-posedness of the Maxwell-Dirac system, Amer. J. Math., 132 (2010), 771-839. doi: 10.1353/ajm.0.0118.

[3]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 60-68. doi: 10.1006/jfan.1995.1119.

[4]

S. Klainerman and M. Machedon, Finite energy solutions of the Yang-Mills equations in ${\mathbb R}^{3+1}$, Ann. of Math., 142 (1995), 39-119. doi: 10.2307/2118611.

[5]

S. Klainerman and M. Machedon (Appendices by J. Bougain and D. Tataru), Remark on Strichartz-type inequalities, Int. Math. Res. Not. IMRN, 5 (1996), 201-220. doi: 10.1155/S1073792896000153.

[6]

S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations, Commun. Contemp. Math., 4 (2002), 223-295. doi: 10.1142/S0219199702000634.

[7]

S. Klainerman and D. Tataru, On the optimal local regularity for the Yang-Mills equations in $\mathbb{R}^{4+1}$, J. Amer. Math. Soc., 12 (1999), 93-116. doi: 10.1090/S0894-0347-99-00282-9.

[8]

J. Krieger and J. Sterbenz, Global regularity for the Yang-Mills equations on high dimensonal Minkowski space, Mem. Amer. Math. Soc., 223 (2013), No. 1047 doi: 10.1090/S0065-9266-2012-00566-1.

[9]

J. Krieger and D. Tataru, Global well-posedness for the Yang-Mills equations in 4+1 dimensions. Small energy, Ann. of Math., 185 (2017), 831-893. doi: 10.4007/annals.2017.185.3.3.

[10]

S. Oh, Gauge choice for the Yang-Mills equations using the Yang-Mills heat flow and local well-posedness in H1, J. Hyperbolic Differ. Equ., 11 (2014), 1-108. doi: 10.1142/S0219891614500015.

[11]

S. Oh, Finite energy global well-posedness of the Yang-Mills equations on $\mathbb{R}^{1+3}$: an approach using the Yang-Mills heat flow, Duke Math. J., 164 (2015), 1669-1732. doi: 10.1215/00127094-3119953.

[12]

H. Pecher, Local well-posedness for the (n+1)-dimensional Yang-Mills and Yang-Mills-Higgs system in temporal gauge, NoDEA Nonlinear Differential Equations Appl., 23 (2016), 23-40. doi: 10.1007/s00030-016-0395-9.

[13]

S. Selberg and A. Tesfahun, Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Comm. Partial Differential Equations, 35 (2010), 10290-1057. doi: 10.1080/03605301003717100.

[14]

S. Selberg and A. Tesfahun, Null structure and local well-posedness in the energy class for the Yang-Mills equations in Lorenz gauge, J. Eur. Math. Soc. (JEMS), 18 (2016), 1729-1752. doi: 10.4171/JEMS/627.

[15]

T. Tao, Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm, J. Differential Equations, 189 (2003), 366-382. doi: 10.1016/S0022-0396(02)00177-8.

[16]

A. Tesfahun, Local well-posedness of Yang-Mills equations in Lorenz gauge below the energy norm, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 849-875. doi: 10.1007/s00030-014-0306-x.

[1]

Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389

[2]

Alberto Ibort, Amelia Spivak. Covariant Hamiltonian field theories on manifolds with boundary: Yang-Mills theories. Journal of Geometric Mechanics, 2017, 9 (1) : 47-82. doi: 10.3934/jgm.2017002

[3]

Shaoyun Shi, Wenlei Li. Non-integrability of generalized Yang-Mills Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1645-1655. doi: 10.3934/dcds.2013.33.1645

[4]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[5]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[6]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[7]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[8]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

[9]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[10]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[11]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[12]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[13]

Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803

[14]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[15]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[16]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[17]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[18]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[19]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

[20]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

2017 Impact Factor: 0.884

Article outline

[Back to Top]