• Previous Article
    Well-posedness of axially symmetric incompressible ideal magnetohydrodynamic equations with vacuum under the non-collinearity condition
  • CPAA Home
  • This Issue
  • Next Article
    On Positive solutions of integral equations with the weighted Bessel potentials
March 2019, 18(2): 603-623. doi: 10.3934/cpaa.2019030

Well-posedness issues for some critical coupled non-linear Klein-Gordon equations

University Tunis El Manar, Faculty of Sciences of Tunis, 2092, Tunis, Tunisia

Received  November 2017 Revised  July 2018 Published  October 2018

The initial value problem for some coupled non-linear wave equations is investigated. In the defocusing case, global well-posedness and ill-posedness results are obtained. In the focusing sign, the existence of global and non global solutions are discussed via the potential-well theory. Finally, strong instability of standing waves are established.

Citation: Radhia Ghanmi, Tarek Saanouni. Well-posedness issues for some critical coupled non-linear Klein-Gordon equations. Communications on Pure & Applied Analysis, 2019, 18 (2) : 603-623. doi: 10.3934/cpaa.2019030
References:
[1]

R. A. Adams, Sobolev Spaces, Academic, New York, 1975.

[2]

J. M. Arnaudiès and H. Fraysse, Cours de Mathématiques, Dunod, 1996.

[3]

A. Atallah Baraket, Local existence and estimations for a semilinear wave equation in two dimension space, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8 (2004), 1-21.

[4]

M. Christ, J. Colliander and T. Tao, Ill- posedness for nonlinear Schrödinger and wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2005.

[5]

J. Ferreira and G. Perla Menzala, Decay of solutions of a system of nonlinear Klein Gordon equations, Internat. J. Math. Math. Sci., 9 (1986), 417-483. doi: 10.1155/S0161171286000601.

[6]

J. Ginibre and G. Velo, The Global Cauchy problem for nonlinear Klein-Gordon equation, Math. Z., 189 (1985), 487-505. doi: 10.1007/BF01168155.

[7]

M. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Annal. of Math., 132 (1990), 485-509. doi: 10.2307/1971427.

[8]

S. IbrahimN. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Analysis and PDE, 4 (2011), 405-460. doi: 10.2140/apde.2011.4.405.

[9]

M. Keel and T. Tao, Endpoint Strichartz estimates, American Journal of Mathematics, 120 (1998), 955-980.

[10]

E. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, American Journal of Mathematics, 133 (2011), 1029-1065. doi: 10.1353/ajm.2011.0029.

[11]

C. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure. Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[12]

M. O. Korpusov, Blow up the solution of a nonlinear system of equations with positive energy, Theoretical and Mathematical Physics, 171 (2012), 725-738. doi: 10.1007/s11232-012-0070-1.

[13]

G. Lebeau, Nonlinear optics and supercritical wave equation, Bull. Soc. R. Sci. Liège., 70 (2001), 267-306.

[14]

G. Lebeau, Perte de régularité pour l'équation des ondes surcritique, Bull. Soc. Math. France., 133 (2005), 145-157.

[15]

M. M. Miranda and L. A. Medeiros, Weak solutions for a system of nonlinear KleinGordon equations, Annali di Matematica pura ed applicata CXLVI, (1987), 173-183. doi: 10.1007/BF01762364.

[16]

M. M. Miranda and L. A. Medeiros, On the existence of global solutions of a coupled nonlinear KleinGordon equations, Funkcialaj Ekvacjoj, 30 (1987), 147-161.

[17]

O. Mahouachi and T. Saanouni, Global well posedness and linearization of a semilinear wave equation with exponential growth, Georgian Math. J., 17 (2010), 543-562.

[18]

O. Mahouachi and T. Saanouni, Well and ill-posedness issues for a class of 2D wave equation with exponential growth, J. Partial Diff. Eqs., 24 (2011), 361-384. doi: 10.4208/jpde.v24.n4.7.

[19]

L. A. Medeiros and G. Perla Menzala, On a mixed problem for a class of nonlinear Klein Gordon equations, Acta Math. Hung, 52 (1988), 61-69. doi: 10.1007/BF01952481.

[20]

M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., 231 (1999), 479-487. doi: 10.1007/PL00004737.

[21]

M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order, Discrete and Continuous Dynamical Systems, 5 (1999), 215-231.

[22]

E. Y. Ovcharov, Global Regularity of Nonlinear Dispersive Equations and Strichartz Estimates, Ph. D thesis, University of Edinburgh, 2009.

[23]

E. Pişkin, Uniform decay and blow-up of solutions for coupled nonlinear Klein-Gordon equations with nonlinear damping terms, Math. Meth. Appl. Sci., 37 (2014), 3036-3047. doi: 10.1002/mma.3042.

[24]

E. Pişkin, Blow-up of solutions for coupled nonlinear Klein-Gordon equations with weak damping terms, Math. Sci. Letters, 3 (2014), 189-191.

[25]

T. Saanouni, A note on coupled focusing nonlinear Schrödinger equations, Applicable Analysis, 95 (2016), 2063-2080. doi: 10.1080/00036811.2015.1086757.

[26]

I. Segal, Nonlinear partial differential equations in Quantum Field Theory, Proc. Symp. Appl. Math. A.M.S., 17 (1965), 210-226.

[27]

M. Struwe, Semilinear wave equations, Bull. Amer. Math. Soc, N.S., 26 (1992), 53-85. doi: 10.1090/S0273-0979-1992-00225-2.

[28]

M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions, Math. Ann., 350 (2011), 707-719. doi: 10.1007/s00208-010-0567-6.

[29]

J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, 7 (1994), 303-309. doi: 10.1155/S1073792894000346.

[30]

Y. Wang, Non-existence of global solutions of a class of coupled non-linear Klein-Gordon equations with non-negative potentials and arbitrary initial energy, IMA Journal of Applied Mathematics, 74 (2009), 392-415. doi: 10.1093/imamat/hxp004.

[31]

S. T. Wu, Blow-up results for systems of nonlinear Klein-Gordon equation with arbitrary positive initial energy, Electronic Journal of Differential Equations, 92 (2012), 1-13.

[32]

W. Xiao and Y. Ping, Global solutions and finite time blow up for some system of nonlinear wave equations, Applied Mathematics and Computation, 219 (2012), 3754-3768. doi: 10.1016/j.amc.2012.10.005.

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, Academic, New York, 1975.

[2]

J. M. Arnaudiès and H. Fraysse, Cours de Mathématiques, Dunod, 1996.

[3]

A. Atallah Baraket, Local existence and estimations for a semilinear wave equation in two dimension space, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8 (2004), 1-21.

[4]

M. Christ, J. Colliander and T. Tao, Ill- posedness for nonlinear Schrödinger and wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2005.

[5]

J. Ferreira and G. Perla Menzala, Decay of solutions of a system of nonlinear Klein Gordon equations, Internat. J. Math. Math. Sci., 9 (1986), 417-483. doi: 10.1155/S0161171286000601.

[6]

J. Ginibre and G. Velo, The Global Cauchy problem for nonlinear Klein-Gordon equation, Math. Z., 189 (1985), 487-505. doi: 10.1007/BF01168155.

[7]

M. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Annal. of Math., 132 (1990), 485-509. doi: 10.2307/1971427.

[8]

S. IbrahimN. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Analysis and PDE, 4 (2011), 405-460. doi: 10.2140/apde.2011.4.405.

[9]

M. Keel and T. Tao, Endpoint Strichartz estimates, American Journal of Mathematics, 120 (1998), 955-980.

[10]

E. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, American Journal of Mathematics, 133 (2011), 1029-1065. doi: 10.1353/ajm.2011.0029.

[11]

C. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure. Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[12]

M. O. Korpusov, Blow up the solution of a nonlinear system of equations with positive energy, Theoretical and Mathematical Physics, 171 (2012), 725-738. doi: 10.1007/s11232-012-0070-1.

[13]

G. Lebeau, Nonlinear optics and supercritical wave equation, Bull. Soc. R. Sci. Liège., 70 (2001), 267-306.

[14]

G. Lebeau, Perte de régularité pour l'équation des ondes surcritique, Bull. Soc. Math. France., 133 (2005), 145-157.

[15]

M. M. Miranda and L. A. Medeiros, Weak solutions for a system of nonlinear KleinGordon equations, Annali di Matematica pura ed applicata CXLVI, (1987), 173-183. doi: 10.1007/BF01762364.

[16]

M. M. Miranda and L. A. Medeiros, On the existence of global solutions of a coupled nonlinear KleinGordon equations, Funkcialaj Ekvacjoj, 30 (1987), 147-161.

[17]

O. Mahouachi and T. Saanouni, Global well posedness and linearization of a semilinear wave equation with exponential growth, Georgian Math. J., 17 (2010), 543-562.

[18]

O. Mahouachi and T. Saanouni, Well and ill-posedness issues for a class of 2D wave equation with exponential growth, J. Partial Diff. Eqs., 24 (2011), 361-384. doi: 10.4208/jpde.v24.n4.7.

[19]

L. A. Medeiros and G. Perla Menzala, On a mixed problem for a class of nonlinear Klein Gordon equations, Acta Math. Hung, 52 (1988), 61-69. doi: 10.1007/BF01952481.

[20]

M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., 231 (1999), 479-487. doi: 10.1007/PL00004737.

[21]

M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order, Discrete and Continuous Dynamical Systems, 5 (1999), 215-231.

[22]

E. Y. Ovcharov, Global Regularity of Nonlinear Dispersive Equations and Strichartz Estimates, Ph. D thesis, University of Edinburgh, 2009.

[23]

E. Pişkin, Uniform decay and blow-up of solutions for coupled nonlinear Klein-Gordon equations with nonlinear damping terms, Math. Meth. Appl. Sci., 37 (2014), 3036-3047. doi: 10.1002/mma.3042.

[24]

E. Pişkin, Blow-up of solutions for coupled nonlinear Klein-Gordon equations with weak damping terms, Math. Sci. Letters, 3 (2014), 189-191.

[25]

T. Saanouni, A note on coupled focusing nonlinear Schrödinger equations, Applicable Analysis, 95 (2016), 2063-2080. doi: 10.1080/00036811.2015.1086757.

[26]

I. Segal, Nonlinear partial differential equations in Quantum Field Theory, Proc. Symp. Appl. Math. A.M.S., 17 (1965), 210-226.

[27]

M. Struwe, Semilinear wave equations, Bull. Amer. Math. Soc, N.S., 26 (1992), 53-85. doi: 10.1090/S0273-0979-1992-00225-2.

[28]

M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions, Math. Ann., 350 (2011), 707-719. doi: 10.1007/s00208-010-0567-6.

[29]

J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, 7 (1994), 303-309. doi: 10.1155/S1073792894000346.

[30]

Y. Wang, Non-existence of global solutions of a class of coupled non-linear Klein-Gordon equations with non-negative potentials and arbitrary initial energy, IMA Journal of Applied Mathematics, 74 (2009), 392-415. doi: 10.1093/imamat/hxp004.

[31]

S. T. Wu, Blow-up results for systems of nonlinear Klein-Gordon equation with arbitrary positive initial energy, Electronic Journal of Differential Equations, 92 (2012), 1-13.

[32]

W. Xiao and Y. Ping, Global solutions and finite time blow up for some system of nonlinear wave equations, Applied Mathematics and Computation, 219 (2012), 3754-3768. doi: 10.1016/j.amc.2012.10.005.

[1]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure & Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[2]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[3]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[4]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[5]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[6]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[7]

M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573

[8]

Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061

[9]

Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036

[10]

Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081

[11]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[12]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[13]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[14]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[15]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[16]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[17]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[18]

Hironobu Sasaki. Remark on the scattering problem for the Klein-Gordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903-911. doi: 10.3934/proc.2007.2007.903

[19]

Satoshi Masaki, Jun-ichi Segata. Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1595-1611. doi: 10.3934/cpaa.2018076

[20]

Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973

2017 Impact Factor: 0.884

Article outline

[Back to Top]