• Previous Article
    New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts
  • CPAA Home
  • This Issue
  • Next Article
    Spectral expansion series with parenthesis for the nonself-adjoint periodic differential operators
January 2019, 18(1): 361-396. doi: 10.3934/cpaa.2019019

Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems

1. 

School of Science, Chang'an University, Xi'an, Shaanxi 710064, China

2. 

Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA

3. 

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada

* Corresponding author

Received  January 2018 Revised  January 2018 Published  August 2018

Fund Project: X. Bao was partially supported by Natural Science Basic Research Plan in Shaanxi Province of China (2017JQ1014) and NSF of China (11701041). Z. Shen was supported by a start-up grant from the University of Alberta.

The present paper is concerned with the spatial spreading speeds and traveling wave solutions of cooperative systems in space-time periodic habitats with nonlocal dispersal. It is assumed that the trivial solution ${\bf u} = {\bf 0}$ of such a system is unstable and the system has a stable space-time periodic positive solution ${\bf u^*}(t,x)$. We first show that in any direction $ξ∈ \mathbb{S}^{N-1}$, such a system has a finite spreading speed interval, and under certain condition, the spreading speed interval is a singleton set, and hence, the system has a single spreading speed $c^{*}(ξ)$ in the direction of $ξ$. Next, we show that for any $c>c^{*}(ξ)$, there are space-time periodic traveling wave solutions of the form ${\bf{u}}(t,x) = {\bf{Φ}}(x-ctξ,t,ctξ)$ connecting ${\bf u^*}$ and ${\bf 0}$, and propagating in the direction of $ξ$ with speed $c$, where $Φ(x,t,y)$ is periodic in $t$ and $y$, and there is no such solution for $c<c^{*}(ξ)$. We also prove the continuity and uniqueness of space-time periodic traveling wave solutions when the reaction term is strictly sub-homogeneous. Finally, we apply the above results to nonlocal monostable equations and two-species competitive systems with nonlocal dispersal and space-time periodicity.

Citation: Xiongxiong Bao, Wenxian Shen, Zhongwei Shen. Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Communications on Pure & Applied Analysis, 2019, 18 (1) : 361-396. doi: 10.3934/cpaa.2019019
References:
[1]

X. Bao and Z.-C. Wang, Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differential Equations, 255 (2013), 2402-2435. doi: 10.1016/j.jde.2013.06.024.

[2]

X. BaoW.-T. Li and W. Shen, Traveling wave solutions of Lotka-Volterra competition sys tems with nonlocal dispersal in periodic habitats, J. Differential Equations, 260 (2016), 8590-8637. doi: 10.1016/j.jde.2016.02.032.

[3]

X. Bao and W. Shen, Criteria for the existence of principal eigenvalue of time periodic cooper ative linear system with nonlocal dispersal, Proc. Amer. Math. Soc., 145 (2017), 2881-2894. doi: 10.1090/proc/13602.

[4]

C. Conley and R. Gardner, An application of the generalized Morse index to traveling wave solutions of a competitive reaction diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343. doi: 10.1512/iumj.1984.33.7018.

[5]

J. Coville, On a simple criterion for the existtence of a principal eigenfucntion of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953. doi: 10.1016/j.jde.2010.07.003.

[6]

J. CovilleJ. Dávila and S. Martínez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity, Ann. Inst. H. Poincar'e Anal. Non Lin'eaire, 30 (2013), 179-223. doi: 10.1016/j.anihpc.2012.07.005.

[7]

W. Ding and X. Liang, Principal eigenvalues of generalized convolution operators on the circle and spreading speeds of noncompact evolution systems in periodic media, SIAM J. Math. Anal., 47 (2015), 855-896. doi: 10.1137/140958141.

[8]

S. R. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32. doi: 10.1007/BF00276112.

[9]

J. Fang and X.-Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704.

[10]

J. FangX. Yu and X.-Q. Zhao, Traveling waves and spreading speeds for time-space periodic monotone systems, J. Functional Analysis, 272 (2017), 4222-4262. doi: 10.1016/j.jfa.2017.02.028.

[11]

J.-S. Guo and C.-H. Wu, Wave propagation for a two-component lattice dynamical system arising in strong competition models, J. Differential Equations, 250 (2011), 3504-3533. doi: 10.1016/j.jde.2010.12.004.

[12]

J.-S. Guo and C.-H. Wu, Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Eqnuations, 252 (2012), 4357-4391. doi: 10.1016/j.jde.2012.01.009.

[13]

J.-S. Guo and X. Liang, The minimal speed of traveling fronts for Lotka-volterra competition system, J. Dynam. Differential Equations, 23 (2011), 353-363. doi: 10.1007/s10884-011-9214-5.

[14]

G. HetzerT. Nguyen and W. Shen, Coexistence and extinction in the Lotka-Volterra com petition model with nonlocal dispersal, Commun. Pure Appl. Anal., 11 (2012), 1699-1722. doi: 10.3934/cpaa.2012.11.1699.

[15]

G. HetzerW. Shen and A. Zhang, Effects of spatical variatious and dispersal strategies on principal eigenvalues of dispersal operators and spreading speeds of monostable equations, Rocky Mountain Journal of Mathematics, 43 (2013), 489-513. doi: 10.1216/RMJ-2013-43-2-489.

[16]

Y. Hosono, The minimal spread of traveling fronts for a diffusive Lotka-Volterra competition model, Bull. Math. Biol., 66 (1998), 435-448.

[17]

W. Huang, Problem on minimum wave speed for a Lotka-Volterra reaction diffusion compe tition model, J. Dynam. Differential Equations, 22 (2010), 285-297. doi: 10.1007/s10884-010-9159-0.

[18]

C. HuY. KuangB. Li and H. Liu, Spreading speeds and traveling wave solutions in coop erative intergal-differential system, Discrete Contin. Dyn. Syst. B, 20 (2015), 1663-1684. doi: 10.3934/dcdsb.2015.30.1663.

[19]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363. doi: 10.1137/S0036141093244556.

[20]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Non linear Anal., 28 (1997), 145-164. doi: 10.1016/0362-546X(95)00142-I.

[21] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin-Heidelberg, 1976.
[22]

L. KongNar Rawal and W. Shen, Spreading speeds and linear determinacy for two species competition systems with nonlocal dispersal in periodic habitats, Math. Model. Nat. Phenom., 10 (2015), 113-141. doi: 10.1051/mmnp/201510609.

[23]

M. LewisH. Weinberger and B. Li, Spreading speed and linear determincay for two species competition models, J. Math. Biol., 45 (2002), 219-233. doi: 10.1007/s002850200144.

[24]

B. LiH. F. Weinberger and M. Lewis, Spreading speeds as slowest wave speeds for cooperative system, Math. Biosci., 196 (2005), 82-98. doi: 10.1016/j.mbs.2005.03.008.

[25]

W.-T. LiG. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction diffusion systems with applications to diffusion competition system, Nonlinearity, 19 (2006), 1253-1273. doi: 10.1088/0951-7715/19/6/003.

[26]

W.-T. LiL Zhang and G.-B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 35 (2015), 1531-1560. doi: 10.3934/dcds.2015.35.1531.

[27]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154.

[28]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Functional Analysis, 259 (2012), 857-903. doi: 10.1016/j.jfa.2010.04.018.

[29]

R. Lui, Biological growth and spread modeled by system of recursions. Ⅰ. Mathematical theory, Math. Biosci., 0 93 (1989), 269-295. doi: 10.1016/0025-5564(89)90026-6.

[30]

G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl., 92 (2009), 232-262. doi: 10.1016/j.matpur.2009.04.002.

[31]

J. NolenM. Rudd and J. Xin, Existence of KPP fronts in spatially-temporally periodic ad vection and variational principle for propagation speeds, Dyn. Partial Differ. Equ., 2 (2005), 1-24. doi: 10.4310/DPDE.2005.v2.n1.a1.

[32]

J. Nolen and J. Xin, Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle, Discrete Contin. Dyn. Syst., 13 (2005), 1217-1234. doi: 10.3934/dcds.2005.13.617.

[33]

S. PanW.-T. Li and G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffsion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392. doi: 10.1007/s00033-007-7005-y.

[34]

S. PanW.-T. Li and G. Lin, Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay, Nonliner Anal. Theory, Methods, Applications, 72 (2010), 3150-3158. doi: 10.1016/j.na.2009.12.008.

[35]

S. Pan and G. Lin, Invasion traveling wave solutions of a competition system with dispersal, Boundary Value Problems 2012, (2012), 120. doi: 10.1186/1687-2770-2012-120.

[36] A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations, Springer-Verlag, New York, Berlin Heidelberg Tokyo, 1983. doi: 10.1007/978-1-4612-5561-1.
[37]

Nar Rawal and W. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, Dynamics J., Differential Equations, 24 (2012), 927-954. doi: 10.1007/s10884-012-9276-z.

[38]

N. RawalW. Shen and A. Zhang, Spreading speeds and traveling waves of nonlocal monos table equations in time and space periodic habitats, Discrete and Continuous Dynamical System A, 35 (2015), 1609-1640. doi: 10.3934/dcds.2015.35.1609.

[39]

W. Shen, Stability of transition waves and positive entire solutions of Fisher-KPP equations with time and space dependence, Nonlinearity, 30 (2017), 3466-3491. doi: 10.1088/1361-6544/aa7f08.

[40]

W. Shen and A. Zhang, Traveling wave solutions of monostable equations with nonlocal dispersal in space periodic habitats, Communications on Applied Nonlinear Analysis, 19 (2012), 73-101.

[41]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitates, J. Differential Equations, 249 (2010), 747-795. doi: 10.1016/j.jde.2010.04.012.

[42]

W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), 1681-1696. doi: 10.1090/S0002-9939-2011-11011-6.

[43]

X. Yu and X.-Q. Zhao, Propagation phenomena for a reaction advection diffusion competition model in a periodic habitat, J. Dynam. Differential Equations, 29 (2017), 41-66. doi: 10.1007/s10884-015-9426-1.

[44]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396. doi: 10.1137/0513028.

[45]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45 (2002), 511-548. doi: 10.1007/s00285-002-0169-3.

[46]

H. F. WeinbergerM. Lewis and B. Li, Analysis of linear determinacy for speed in cooperative models, J. Math. Biol., 45 (2002), 183-218. doi: 10.1007/s002850200145.

[47]

X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books in Mathematics, Ser. 16, Springer-Verlag, NewYork, 2003. doi: 10.1007/978-0-387-21761-1.

[48]

G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627-671. doi: 10.1016/j.matpur.2010.11.005.

[49]

G. Zhao and S. Ruan, Time periodic traveling wave solutions for periodic advection reaction diffusion systems, J. Differential Equations, 257 (2014), 1078-1147. doi: 10.1016/j.jde.2014.05.001.

show all references

References:
[1]

X. Bao and Z.-C. Wang, Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differential Equations, 255 (2013), 2402-2435. doi: 10.1016/j.jde.2013.06.024.

[2]

X. BaoW.-T. Li and W. Shen, Traveling wave solutions of Lotka-Volterra competition sys tems with nonlocal dispersal in periodic habitats, J. Differential Equations, 260 (2016), 8590-8637. doi: 10.1016/j.jde.2016.02.032.

[3]

X. Bao and W. Shen, Criteria for the existence of principal eigenvalue of time periodic cooper ative linear system with nonlocal dispersal, Proc. Amer. Math. Soc., 145 (2017), 2881-2894. doi: 10.1090/proc/13602.

[4]

C. Conley and R. Gardner, An application of the generalized Morse index to traveling wave solutions of a competitive reaction diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343. doi: 10.1512/iumj.1984.33.7018.

[5]

J. Coville, On a simple criterion for the existtence of a principal eigenfucntion of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953. doi: 10.1016/j.jde.2010.07.003.

[6]

J. CovilleJ. Dávila and S. Martínez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity, Ann. Inst. H. Poincar'e Anal. Non Lin'eaire, 30 (2013), 179-223. doi: 10.1016/j.anihpc.2012.07.005.

[7]

W. Ding and X. Liang, Principal eigenvalues of generalized convolution operators on the circle and spreading speeds of noncompact evolution systems in periodic media, SIAM J. Math. Anal., 47 (2015), 855-896. doi: 10.1137/140958141.

[8]

S. R. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32. doi: 10.1007/BF00276112.

[9]

J. Fang and X.-Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704.

[10]

J. FangX. Yu and X.-Q. Zhao, Traveling waves and spreading speeds for time-space periodic monotone systems, J. Functional Analysis, 272 (2017), 4222-4262. doi: 10.1016/j.jfa.2017.02.028.

[11]

J.-S. Guo and C.-H. Wu, Wave propagation for a two-component lattice dynamical system arising in strong competition models, J. Differential Equations, 250 (2011), 3504-3533. doi: 10.1016/j.jde.2010.12.004.

[12]

J.-S. Guo and C.-H. Wu, Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Eqnuations, 252 (2012), 4357-4391. doi: 10.1016/j.jde.2012.01.009.

[13]

J.-S. Guo and X. Liang, The minimal speed of traveling fronts for Lotka-volterra competition system, J. Dynam. Differential Equations, 23 (2011), 353-363. doi: 10.1007/s10884-011-9214-5.

[14]

G. HetzerT. Nguyen and W. Shen, Coexistence and extinction in the Lotka-Volterra com petition model with nonlocal dispersal, Commun. Pure Appl. Anal., 11 (2012), 1699-1722. doi: 10.3934/cpaa.2012.11.1699.

[15]

G. HetzerW. Shen and A. Zhang, Effects of spatical variatious and dispersal strategies on principal eigenvalues of dispersal operators and spreading speeds of monostable equations, Rocky Mountain Journal of Mathematics, 43 (2013), 489-513. doi: 10.1216/RMJ-2013-43-2-489.

[16]

Y. Hosono, The minimal spread of traveling fronts for a diffusive Lotka-Volterra competition model, Bull. Math. Biol., 66 (1998), 435-448.

[17]

W. Huang, Problem on minimum wave speed for a Lotka-Volterra reaction diffusion compe tition model, J. Dynam. Differential Equations, 22 (2010), 285-297. doi: 10.1007/s10884-010-9159-0.

[18]

C. HuY. KuangB. Li and H. Liu, Spreading speeds and traveling wave solutions in coop erative intergal-differential system, Discrete Contin. Dyn. Syst. B, 20 (2015), 1663-1684. doi: 10.3934/dcdsb.2015.30.1663.

[19]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363. doi: 10.1137/S0036141093244556.

[20]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Non linear Anal., 28 (1997), 145-164. doi: 10.1016/0362-546X(95)00142-I.

[21] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin-Heidelberg, 1976.
[22]

L. KongNar Rawal and W. Shen, Spreading speeds and linear determinacy for two species competition systems with nonlocal dispersal in periodic habitats, Math. Model. Nat. Phenom., 10 (2015), 113-141. doi: 10.1051/mmnp/201510609.

[23]

M. LewisH. Weinberger and B. Li, Spreading speed and linear determincay for two species competition models, J. Math. Biol., 45 (2002), 219-233. doi: 10.1007/s002850200144.

[24]

B. LiH. F. Weinberger and M. Lewis, Spreading speeds as slowest wave speeds for cooperative system, Math. Biosci., 196 (2005), 82-98. doi: 10.1016/j.mbs.2005.03.008.

[25]

W.-T. LiG. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction diffusion systems with applications to diffusion competition system, Nonlinearity, 19 (2006), 1253-1273. doi: 10.1088/0951-7715/19/6/003.

[26]

W.-T. LiL Zhang and G.-B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 35 (2015), 1531-1560. doi: 10.3934/dcds.2015.35.1531.

[27]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154.

[28]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Functional Analysis, 259 (2012), 857-903. doi: 10.1016/j.jfa.2010.04.018.

[29]

R. Lui, Biological growth and spread modeled by system of recursions. Ⅰ. Mathematical theory, Math. Biosci., 0 93 (1989), 269-295. doi: 10.1016/0025-5564(89)90026-6.

[30]

G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl., 92 (2009), 232-262. doi: 10.1016/j.matpur.2009.04.002.

[31]

J. NolenM. Rudd and J. Xin, Existence of KPP fronts in spatially-temporally periodic ad vection and variational principle for propagation speeds, Dyn. Partial Differ. Equ., 2 (2005), 1-24. doi: 10.4310/DPDE.2005.v2.n1.a1.

[32]

J. Nolen and J. Xin, Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle, Discrete Contin. Dyn. Syst., 13 (2005), 1217-1234. doi: 10.3934/dcds.2005.13.617.

[33]

S. PanW.-T. Li and G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffsion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392. doi: 10.1007/s00033-007-7005-y.

[34]

S. PanW.-T. Li and G. Lin, Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay, Nonliner Anal. Theory, Methods, Applications, 72 (2010), 3150-3158. doi: 10.1016/j.na.2009.12.008.

[35]

S. Pan and G. Lin, Invasion traveling wave solutions of a competition system with dispersal, Boundary Value Problems 2012, (2012), 120. doi: 10.1186/1687-2770-2012-120.

[36] A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations, Springer-Verlag, New York, Berlin Heidelberg Tokyo, 1983. doi: 10.1007/978-1-4612-5561-1.
[37]

Nar Rawal and W. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, Dynamics J., Differential Equations, 24 (2012), 927-954. doi: 10.1007/s10884-012-9276-z.

[38]

N. RawalW. Shen and A. Zhang, Spreading speeds and traveling waves of nonlocal monos table equations in time and space periodic habitats, Discrete and Continuous Dynamical System A, 35 (2015), 1609-1640. doi: 10.3934/dcds.2015.35.1609.

[39]

W. Shen, Stability of transition waves and positive entire solutions of Fisher-KPP equations with time and space dependence, Nonlinearity, 30 (2017), 3466-3491. doi: 10.1088/1361-6544/aa7f08.

[40]

W. Shen and A. Zhang, Traveling wave solutions of monostable equations with nonlocal dispersal in space periodic habitats, Communications on Applied Nonlinear Analysis, 19 (2012), 73-101.

[41]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitates, J. Differential Equations, 249 (2010), 747-795. doi: 10.1016/j.jde.2010.04.012.

[42]

W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), 1681-1696. doi: 10.1090/S0002-9939-2011-11011-6.

[43]

X. Yu and X.-Q. Zhao, Propagation phenomena for a reaction advection diffusion competition model in a periodic habitat, J. Dynam. Differential Equations, 29 (2017), 41-66. doi: 10.1007/s10884-015-9426-1.

[44]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396. doi: 10.1137/0513028.

[45]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45 (2002), 511-548. doi: 10.1007/s00285-002-0169-3.

[46]

H. F. WeinbergerM. Lewis and B. Li, Analysis of linear determinacy for speed in cooperative models, J. Math. Biol., 45 (2002), 183-218. doi: 10.1007/s002850200145.

[47]

X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books in Mathematics, Ser. 16, Springer-Verlag, NewYork, 2003. doi: 10.1007/978-0-387-21761-1.

[48]

G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627-671. doi: 10.1016/j.matpur.2010.11.005.

[49]

G. Zhao and S. Ruan, Time periodic traveling wave solutions for periodic advection reaction diffusion systems, J. Differential Equations, 257 (2014), 1078-1147. doi: 10.1016/j.jde.2014.05.001.

[1]

Nar Rawal, Wenxian Shen, Aijun Zhang. Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1609-1640. doi: 10.3934/dcds.2015.35.1609

[2]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[3]

Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663

[4]

Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006

[5]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[6]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[7]

Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257

[8]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[9]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[10]

Wenxian Shen, Xiaoxia Xie. Spectraltheory for nonlocal dispersal operators with time periodic indefinite weight functions and applications. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1023-1047. doi: 10.3934/dcdsb.2017051

[11]

Fang-Di Dong, Wan-Tong Li, Jia-Bing Wang. Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6291-6318. doi: 10.3934/dcds.2017272

[12]

Guo-Bao Zhang, Fang-Di Dong, Wan-Tong Li. Uniqueness and stability of traveling waves for a three-species competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-31. doi: 10.3934/dcdsb.2018218

[13]

Norisuke Ioku. Some space-time integrability estimates of the solution for heat equations in two dimensions. Conference Publications, 2011, 2011 (Special) : 707-716. doi: 10.3934/proc.2011.2011.707

[14]

Aijun Zhang. Traveling wave solutions with mixed dispersal for spatially periodic Fisher-KPP equations. Conference Publications, 2013, 2013 (special) : 815-824. doi: 10.3934/proc.2013.2013.815

[15]

Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227

[16]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[17]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[18]

Zhen-Hui Bu, Zhi-Cheng Wang. Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media. Communications on Pure & Applied Analysis, 2016, 15 (1) : 139-160. doi: 10.3934/cpaa.2016.15.139

[19]

Eddaly Guerra, Héctor Sánchez-Morgado. Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 331-346. doi: 10.3934/cpaa.2014.13.331

[20]

James Nolen, Jack Xin. Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1217-1234. doi: 10.3934/dcds.2005.13.1217

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (68)
  • HTML views (121)
  • Cited by (0)

Other articles
by authors

[Back to Top]