January 2019, 18(1): 285-300. doi: 10.3934/cpaa.2019015

Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

* Corresponding author

Received  November 2017 Revised  November 2017 Published  August 2018

Fund Project: The research is supported by National Natural Science Foundation of China (No.11471267)

In this paper, we investigate the following a class of Choquard equation
$\begin{equation*} -Δ u+u = (I_α*F(u))f(u) \ \ \ \ \ \ {\rm in} \ \mathbb{R}^N,\end{equation*}$
where
$N≥ 3,~α∈ (0,N),~I_α$
is the Riesz potential and
$F(s) = ∈t_{0}^{s}f(t)dt$
. If
$f$
satisfies almost necessary the upper critical growth conditions in the spirit of Berestycki and Lions, we obtain the existence of positive radial ground state solution by using the Pohožaev manifold and the compactness lemma of Strauss.
Citation: Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015
References:
[1]

C. O. AlvesF. GaoM. Squassina and M. Yang, Singularly perturbed critical Choquard equations, J. Differential Equations, 263 (2017), 3943-3988. doi: 10.1016/j.jde.2017.05.009.

[2]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.

[3]

H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl.(9), 58 (1978), 137-151.

[4]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405.

[5]

J. Chabrowski, On the existence of G-symmetric entire solutions for semilinear elliptic equations, Rend. Circ. Mat. Palermo (2), 41 (1992), 413-440. doi: 10.1007/BF02848946.

[6]

F. Gao and M. Yang, A strongly indefinite Choquard equation with critical exponent due to Hardy-Littlewood-Sobolev inequality, Commun. Contemp. Math.. doi: 10.1142/S0219199717500377.

[7]

F. Gao and M. Yang, On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl., 448 (2017), 1006-1041. doi: 10.1016/j.jmaa.2016.11.015.

[8]

F. Gao and M. Yang, On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci China Math. doi: 10.1007/s11425-016-9067-5.

[9]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

[10]

K. R. W. Jones, Newtonian quantum gravity, Australian J. Phys., 48 (1995), 1055-1081.

[11]

T. KüpperZ. Zhang and H. Xia, Multiple positive solutions and bifurcation for an equation related to Choquard's equation, Proc. Edinb. Math. Soc. (2), 46 (2003), 597-607. doi: 10.1017/S0013091502000779.

[12]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.

[13]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374. doi: 10.2307/2007032.

[14]

E. H. Lieb and M. Loss, Analysis, 2nd edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001.

[15]

J. LiuJ. F. Liao and C. L. Tang, Ground state solution for a class of Schrödinger equations involving general critical growth term, Nonlinearity, 30 (2017), 899-911. doi: 10.1088/1361-6544/aa5659.

[16]

P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072. doi: 10.1016/0362-546X(80)90016-4.

[17]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467. doi: 10.1007/s00205-008-0208-3.

[18]

V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579 doi: 10.1090/S0002-9947-2014-06289-2.

[19]

V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184. doi: 10.1016/j.jfa.2013.04.007.

[20]

V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 12 pp. doi: 10.1142/S0219199715500054.

[21]

I. M. MorozR. Penrose and P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity, 15 (1998), 2733-2742. doi: 10.1088/0264-9381/15/9/019.

[22]

S. Pekar, Untersuchungen über die Elektronentheorie der Kristalle, Akademie Verlag. Berlin. 1954.

[23]

R. Penrose, On gravity's role in quantum state reduction, Gen. Relativity Gravitation, 28 (1996), 581-600. doi: 10.1007/BF02105068.

[24]

W. A. Struwe, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.

[25]

P. Tod and I. M. Moroz, An analytical approach to the Schrödinger-Newton equations, Nonlinearity, 12 (1999), 201-216. doi: 10.1088/0951-7715/12/2/002.

[26]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

show all references

References:
[1]

C. O. AlvesF. GaoM. Squassina and M. Yang, Singularly perturbed critical Choquard equations, J. Differential Equations, 263 (2017), 3943-3988. doi: 10.1016/j.jde.2017.05.009.

[2]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.

[3]

H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl.(9), 58 (1978), 137-151.

[4]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405.

[5]

J. Chabrowski, On the existence of G-symmetric entire solutions for semilinear elliptic equations, Rend. Circ. Mat. Palermo (2), 41 (1992), 413-440. doi: 10.1007/BF02848946.

[6]

F. Gao and M. Yang, A strongly indefinite Choquard equation with critical exponent due to Hardy-Littlewood-Sobolev inequality, Commun. Contemp. Math.. doi: 10.1142/S0219199717500377.

[7]

F. Gao and M. Yang, On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl., 448 (2017), 1006-1041. doi: 10.1016/j.jmaa.2016.11.015.

[8]

F. Gao and M. Yang, On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci China Math. doi: 10.1007/s11425-016-9067-5.

[9]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

[10]

K. R. W. Jones, Newtonian quantum gravity, Australian J. Phys., 48 (1995), 1055-1081.

[11]

T. KüpperZ. Zhang and H. Xia, Multiple positive solutions and bifurcation for an equation related to Choquard's equation, Proc. Edinb. Math. Soc. (2), 46 (2003), 597-607. doi: 10.1017/S0013091502000779.

[12]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.

[13]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374. doi: 10.2307/2007032.

[14]

E. H. Lieb and M. Loss, Analysis, 2nd edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001.

[15]

J. LiuJ. F. Liao and C. L. Tang, Ground state solution for a class of Schrödinger equations involving general critical growth term, Nonlinearity, 30 (2017), 899-911. doi: 10.1088/1361-6544/aa5659.

[16]

P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072. doi: 10.1016/0362-546X(80)90016-4.

[17]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467. doi: 10.1007/s00205-008-0208-3.

[18]

V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579 doi: 10.1090/S0002-9947-2014-06289-2.

[19]

V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184. doi: 10.1016/j.jfa.2013.04.007.

[20]

V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 12 pp. doi: 10.1142/S0219199715500054.

[21]

I. M. MorozR. Penrose and P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity, 15 (1998), 2733-2742. doi: 10.1088/0264-9381/15/9/019.

[22]

S. Pekar, Untersuchungen über die Elektronentheorie der Kristalle, Akademie Verlag. Berlin. 1954.

[23]

R. Penrose, On gravity's role in quantum state reduction, Gen. Relativity Gravitation, 28 (1996), 581-600. doi: 10.1007/BF02105068.

[24]

W. A. Struwe, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.

[25]

P. Tod and I. M. Moroz, An analytical approach to the Schrödinger-Newton equations, Nonlinearity, 12 (1999), 201-216. doi: 10.1088/0951-7715/12/2/002.

[26]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

[1]

Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857

[2]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[3]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[4]

Claudianor Oliveira Alves, M. A.S. Souto. On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Communications on Pure & Applied Analysis, 2002, 1 (3) : 417-431. doi: 10.3934/cpaa.2002.1.417

[5]

Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151

[6]

Hui Zhang, Jun Wang, Fubao Zhang. Semiclassical states for fractional Choquard equations with critical growth. Communications on Pure & Applied Analysis, 2019, 18 (1) : 519-538. doi: 10.3934/cpaa.2019026

[7]

Dengfeng Lü. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1781-1795. doi: 10.3934/cpaa.2016014

[8]

Yanfang Xue, Chunlei Tang. Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1121-1145. doi: 10.3934/cpaa.2018054

[9]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[10]

Joachim Krieger, Kenji Nakanishi, Wilhelm Schlag. Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2423-2450. doi: 10.3934/dcds.2013.33.2423

[11]

Alain Bensoussan, Miroslav Bulíček, Jens Frehse. Existence and compactness for weak solutions to Bellman systems with critical growth. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1729-1750. doi: 10.3934/dcdsb.2012.17.1729

[12]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[13]

Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

[14]

Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124

[15]

Horst R. Thieme. Positive perturbation of operator semigroups: growth bounds, essential compactness and asynchronous exponential growth. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 735-764. doi: 10.3934/dcds.1998.4.735

[16]

Jacek Banasiak, Wilson Lamb. The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth. Kinetic & Related Models, 2012, 5 (2) : 223-236. doi: 10.3934/krm.2012.5.223

[17]

Zhongliang Wang. Nonradial positive solutions for a biharmonic critical growth problem. Communications on Pure & Applied Analysis, 2012, 11 (2) : 517-545. doi: 10.3934/cpaa.2012.11.517

[18]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (4) : 813-826. doi: 10.3934/cpaa.2006.5.813

[19]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (1) : 71-84. doi: 10.3934/cpaa.2006.5.71

[20]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

2017 Impact Factor: 0.884

Article outline

[Back to Top]