January 2019, 18(1): 1-13. doi: 10.3934/cpaa.2019001

Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$

School of Science, Jiangnan University, Wuxi, 214122, China

* Corresponding author

Received  May 2017 Revised  November 2017 Published  August 2018

Fund Project: This work is partially supported by NSFC (Grant No. 11401258), NSF of Jiangsu Province (grant No. BK20170172) and China Postdoctoral Science Foundation (grant No. 2015M581689)

In this paper, for a nematic liquid crystal system, we address the space-time decay properties of strong solutions in the whole space $\mathbb{R}^3$. Based on a parabolic interpolation inequality, bootstrap argument and some weighted estimates, we obtain the higher order derivative estimates for such system.

Citation: Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001
References:
[1]

C. AmroucheV. GiraultM. Schonbek and T. Schonbek, Pointwidse decay of solutions and of higher derivatives to Navier-Stokes equations, SIAM J. Math. Anal., 31 (2000), 740-753. doi: 10.1137/S0036141098346177.

[2]

L. CaffarelliR. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compos. Math., 53 (1984), 259-275.

[3]

M. C. CaldererD. GolovatyF. Lin and C. Liu, Time evolution of nematic liquid crystals with variable degree of orientation, SIAM J. Math. Anal., 33 (2002), 1033-1047. doi: 10.1137/S0036141099362086.

[4]

M. Dai and M. Schonbek, Asymptotic behavior of solutions to Liquid crystal systems in $\mathbb{R}^3$, Comm. Partial Differential Equations, 37 (2012), 2138-2164. doi: 10.1080/03605302.2012.729172.

[5]

M. Dai and M. Schonbek, Asymptotic behavior of solutions to the Liquid crystal system in $H^M(\mathbb{R}^3)$, SIAM J. Math. Anal., 46 (2014), 3131-3150. doi: 10.1137/120895342.

[6]

J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961), 22-34.

[7]

J. L. Ericksen, Continuum theory of nematic liquid crystals, Res. Mechanica, 21 (1987), 381-392.

[8]

J. Fan and J. Li, Regularity criteria for the strong solutions to the Ericksen-Leslie system in $\mathbb{R}^3$, J. Math. Anal. Appl., 425 (2015), 695-703. doi: 10.1016/j.jmaa.2014.12.063.

[9]

J. Fan and Y. Zhou, A regularity criterion for a 3D density-dependent incompressible liquid crystals model, Appl. Math. Lett., 58 (2016), 119-124. doi: 10.1016/j.aml.2016.02.002.

[10]

J. FanF. S. AlzahraniT. HayatG. Nakamura and Y. Zhou, Global regularity for the 2D liquid crystal model with mixed partial viscosity, Anal. Appl. (Singap.), 13 (2015), 185-200. doi: 10.1142/S0219530514500481.

[11]

A. Friedman, Partial Differential Equations, Holt, Reinhart and Winston, New York, 1969.

[12]

W. GuJ. Fan and Y. Zhou, Regularity criteria for some simplified non- isothermal models for nematic liquid crystals, Comput. Math. Appl., 72 (2016), 2839-2853. doi: 10.1016/j.camwa.2016.10.006.

[13]

M. Hong and Z. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $\mathbb{R}^2$, Adv. Math., 231 (2012), 1364-1400. doi: 10.1016/j.aim.2012.06.009.

[14]

Z. Jiang and M. Zhu, The large time behavior of solutions to 3D Navier-Stokes equations with nonlinear damping, Math. Methods Appl. Sci., 35 (2012), 97-102. doi: 10.1002/mma.1540.

[15]

Z. Jiang and J. Fan, Time decay rate for two 3D magnetohydrodynamics-α models, Math. Methods Appl. Sci., 37 (2014), 838-845. doi: 10.1002/mma.2840.

[16]

I. Kukavica, Space-time decay for solutions of the Navier-Stokes equations, Indiana Univ. Math. J., 50 (2001), 205-222. doi: 10.1512/iumj.2001.50.2084.

[17]

I. Kukavica, On the weighted decay for solutions of the Navier-Stokes system, Nonlinear Anal., 70 (2009), 2466-2470. doi: 10.1016/j.na.2008.03.031.

[18]

I. Kukavica and J. J. Torres, Weighted bounds for the velocity and the vorticity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 293-303. doi: 10.1088/0951-7715/19/2/003.

[19]

I. Kukavica and J. J. Torres, Weighted $L^p$ decay for solutions of the Navier-Stokes equations, Comm. Partial Differential Equations, 32 (2007), 819-831. doi: 10.1080/03605300600781659.

[20]

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810.

[21]

F. M. Leslie, Theory of flow phenomena in liquid crystals, in Advances in Liquid Crystals (Vol 4, G. Brown ed.), Academic press, New york, 1979, 1-81.

[22]

F. LinJ. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336. doi: 10.1007/s00205-009-0278-x.

[23]

F. Lin and C. Liu, Nonparabolic dissipative ssytems modelling the flow of liquid crystals, Comm. Pure. Appl. Math., 489 (1995), 501-537. doi: 10.1002/cpa.3160480503.

[24]

S. Liu and X. Xu, Global existence and temporal decay for the nematic liquid crystal flows, J. Math. Anal. Appl., 426 (2015), 228-246. doi: 10.1016/j.jmaa.2015.01.001.

[25]

Q. Liu, On the temporal decay of solutions to the two-dimensional nematic liquid crystal folws, Math. Nachr., 289 (2016), 678-692. doi: 10.1002/mana.201400313.

[26]

T. Miyakawa, On space-time decay properties of nonstationary incompressible Navier-Stokes flows in $\mathbb{R}^n$, Funkcial. Ekvac., 43 (2000), 541-557.

[27]

C. Qian, Remarks on the regularity criterion for the nematic liquid crystal folws in $\mathbb{R}^3$, Appl. Math. Computation, 274 (2016), 679-689. doi: 10.1016/j.amc.2015.11.007.

[28]

M. E. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88 (1985), 209-222. doi: 10.1007/BF00752111.

[29]

M. E. Schonbek, Large time behavior of solutions to the Navier-Stokes equations, Comm. Partial Diff. Equations, 11 (1986), 733-763. doi: 10.1080/03605308608820443.

[30]

M. Schonbek and T. Schonbek, On the boundedness and decay of moments of solutions to the Navier-Stokes equations, Adv. Differential Equations, 5 (2000), 861-898.

[31]

S. Takahashi, A weighted equation approach to decay rate estimates for the Navier-Stokes equations, Nonlinear Anal., 37 (1999), 751-789. doi: 10.1016/S0362-546X(98)00070-4.

[32]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Ration. Mech. Anal., 200 (2011), 1-19. doi: 10.1007/s00205-010-0343-5.

[33]

S. Weng, Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations, J. Funct. Anal., 270 (2016), 2168-2187. doi: 10.1016/j.jfa.2016.01.021.

[34]

S. Weng, Remarks on asymptotic behaviors of strong solutions to a viscous Boussinesq system, Math. Methods Appl. Sci., 39 (2016), 4398-4418. doi: 10.1002/mma.3868.

[35]

H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows, Discrete Contin. Dynam. Systems, 26 (2010), 379-396. doi: 10.3934/dcds.2010.26.379.

[36]

Y. Zhou, A remark on the decay of solutions to the 3-D Navier-Stokes equations, Math. Methods Appl. Sci., 30 (2007), 1223-1229. doi: 10.1002/mma.841.

[37]

Y. Zhou, Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows, Nonlinearity, 21 (2008), 2061-2071. doi: 10.1088/0951-7715/21/9/008.

[38]

Y. Zhou and J. Fan, A regularity criterion for the nematic liquid crystal flows, J. Inequal. Appl., 2010, Art. ID 589697, 9 pp. doi: 10.1155/2010/589697.

show all references

References:
[1]

C. AmroucheV. GiraultM. Schonbek and T. Schonbek, Pointwidse decay of solutions and of higher derivatives to Navier-Stokes equations, SIAM J. Math. Anal., 31 (2000), 740-753. doi: 10.1137/S0036141098346177.

[2]

L. CaffarelliR. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compos. Math., 53 (1984), 259-275.

[3]

M. C. CaldererD. GolovatyF. Lin and C. Liu, Time evolution of nematic liquid crystals with variable degree of orientation, SIAM J. Math. Anal., 33 (2002), 1033-1047. doi: 10.1137/S0036141099362086.

[4]

M. Dai and M. Schonbek, Asymptotic behavior of solutions to Liquid crystal systems in $\mathbb{R}^3$, Comm. Partial Differential Equations, 37 (2012), 2138-2164. doi: 10.1080/03605302.2012.729172.

[5]

M. Dai and M. Schonbek, Asymptotic behavior of solutions to the Liquid crystal system in $H^M(\mathbb{R}^3)$, SIAM J. Math. Anal., 46 (2014), 3131-3150. doi: 10.1137/120895342.

[6]

J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961), 22-34.

[7]

J. L. Ericksen, Continuum theory of nematic liquid crystals, Res. Mechanica, 21 (1987), 381-392.

[8]

J. Fan and J. Li, Regularity criteria for the strong solutions to the Ericksen-Leslie system in $\mathbb{R}^3$, J. Math. Anal. Appl., 425 (2015), 695-703. doi: 10.1016/j.jmaa.2014.12.063.

[9]

J. Fan and Y. Zhou, A regularity criterion for a 3D density-dependent incompressible liquid crystals model, Appl. Math. Lett., 58 (2016), 119-124. doi: 10.1016/j.aml.2016.02.002.

[10]

J. FanF. S. AlzahraniT. HayatG. Nakamura and Y. Zhou, Global regularity for the 2D liquid crystal model with mixed partial viscosity, Anal. Appl. (Singap.), 13 (2015), 185-200. doi: 10.1142/S0219530514500481.

[11]

A. Friedman, Partial Differential Equations, Holt, Reinhart and Winston, New York, 1969.

[12]

W. GuJ. Fan and Y. Zhou, Regularity criteria for some simplified non- isothermal models for nematic liquid crystals, Comput. Math. Appl., 72 (2016), 2839-2853. doi: 10.1016/j.camwa.2016.10.006.

[13]

M. Hong and Z. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $\mathbb{R}^2$, Adv. Math., 231 (2012), 1364-1400. doi: 10.1016/j.aim.2012.06.009.

[14]

Z. Jiang and M. Zhu, The large time behavior of solutions to 3D Navier-Stokes equations with nonlinear damping, Math. Methods Appl. Sci., 35 (2012), 97-102. doi: 10.1002/mma.1540.

[15]

Z. Jiang and J. Fan, Time decay rate for two 3D magnetohydrodynamics-α models, Math. Methods Appl. Sci., 37 (2014), 838-845. doi: 10.1002/mma.2840.

[16]

I. Kukavica, Space-time decay for solutions of the Navier-Stokes equations, Indiana Univ. Math. J., 50 (2001), 205-222. doi: 10.1512/iumj.2001.50.2084.

[17]

I. Kukavica, On the weighted decay for solutions of the Navier-Stokes system, Nonlinear Anal., 70 (2009), 2466-2470. doi: 10.1016/j.na.2008.03.031.

[18]

I. Kukavica and J. J. Torres, Weighted bounds for the velocity and the vorticity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 293-303. doi: 10.1088/0951-7715/19/2/003.

[19]

I. Kukavica and J. J. Torres, Weighted $L^p$ decay for solutions of the Navier-Stokes equations, Comm. Partial Differential Equations, 32 (2007), 819-831. doi: 10.1080/03605300600781659.

[20]

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810.

[21]

F. M. Leslie, Theory of flow phenomena in liquid crystals, in Advances in Liquid Crystals (Vol 4, G. Brown ed.), Academic press, New york, 1979, 1-81.

[22]

F. LinJ. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336. doi: 10.1007/s00205-009-0278-x.

[23]

F. Lin and C. Liu, Nonparabolic dissipative ssytems modelling the flow of liquid crystals, Comm. Pure. Appl. Math., 489 (1995), 501-537. doi: 10.1002/cpa.3160480503.

[24]

S. Liu and X. Xu, Global existence and temporal decay for the nematic liquid crystal flows, J. Math. Anal. Appl., 426 (2015), 228-246. doi: 10.1016/j.jmaa.2015.01.001.

[25]

Q. Liu, On the temporal decay of solutions to the two-dimensional nematic liquid crystal folws, Math. Nachr., 289 (2016), 678-692. doi: 10.1002/mana.201400313.

[26]

T. Miyakawa, On space-time decay properties of nonstationary incompressible Navier-Stokes flows in $\mathbb{R}^n$, Funkcial. Ekvac., 43 (2000), 541-557.

[27]

C. Qian, Remarks on the regularity criterion for the nematic liquid crystal folws in $\mathbb{R}^3$, Appl. Math. Computation, 274 (2016), 679-689. doi: 10.1016/j.amc.2015.11.007.

[28]

M. E. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88 (1985), 209-222. doi: 10.1007/BF00752111.

[29]

M. E. Schonbek, Large time behavior of solutions to the Navier-Stokes equations, Comm. Partial Diff. Equations, 11 (1986), 733-763. doi: 10.1080/03605308608820443.

[30]

M. Schonbek and T. Schonbek, On the boundedness and decay of moments of solutions to the Navier-Stokes equations, Adv. Differential Equations, 5 (2000), 861-898.

[31]

S. Takahashi, A weighted equation approach to decay rate estimates for the Navier-Stokes equations, Nonlinear Anal., 37 (1999), 751-789. doi: 10.1016/S0362-546X(98)00070-4.

[32]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Ration. Mech. Anal., 200 (2011), 1-19. doi: 10.1007/s00205-010-0343-5.

[33]

S. Weng, Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations, J. Funct. Anal., 270 (2016), 2168-2187. doi: 10.1016/j.jfa.2016.01.021.

[34]

S. Weng, Remarks on asymptotic behaviors of strong solutions to a viscous Boussinesq system, Math. Methods Appl. Sci., 39 (2016), 4398-4418. doi: 10.1002/mma.3868.

[35]

H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows, Discrete Contin. Dynam. Systems, 26 (2010), 379-396. doi: 10.3934/dcds.2010.26.379.

[36]

Y. Zhou, A remark on the decay of solutions to the 3-D Navier-Stokes equations, Math. Methods Appl. Sci., 30 (2007), 1223-1229. doi: 10.1002/mma.841.

[37]

Y. Zhou, Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows, Nonlinearity, 21 (2008), 2061-2071. doi: 10.1088/0951-7715/21/9/008.

[38]

Y. Zhou and J. Fan, A regularity criterion for the nematic liquid crystal flows, J. Inequal. Appl., 2010, Art. ID 589697, 9 pp. doi: 10.1155/2010/589697.

[1]

Norisuke Ioku. Some space-time integrability estimates of the solution for heat equations in two dimensions. Conference Publications, 2011, 2011 (Special) : 707-716. doi: 10.3934/proc.2011.2011.707

[2]

Xiongxiong Bao, Wenxian Shen, Zhongwei Shen. Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Communications on Pure & Applied Analysis, 2019, 18 (1) : 361-396. doi: 10.3934/cpaa.2019019

[3]

Yuming Zhang. On continuity equations in space-time domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212

[4]

Susanne Pumplün, Thomas Unger. Space-time block codes from nonassociative division algebras. Advances in Mathematics of Communications, 2011, 5 (3) : 449-471. doi: 10.3934/amc.2011.5.449

[5]

Gerard A. Maugin, Martine Rousseau. Prolegomena to studies on dynamic materials and their space-time homogenization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1599-1608. doi: 10.3934/dcdss.2013.6.1599

[6]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[7]

Frédérique Oggier, B. A. Sethuraman. Quotients of orders in cyclic algebras and space-time codes. Advances in Mathematics of Communications, 2013, 7 (4) : 441-461. doi: 10.3934/amc.2013.7.441

[8]

Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167

[9]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[10]

Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257

[11]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[12]

Blanca Climent-Ezquerra, Francisco Guillén-González. Global in time solution and time-periodicity for a smectic-A liquid crystal model. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1473-1493. doi: 10.3934/cpaa.2010.9.1473

[13]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[14]

Jishan Fan, Fei Jiang. Large-time behavior of liquid crystal flows with a trigonometric condition in two dimensions. Communications on Pure & Applied Analysis, 2016, 15 (1) : 73-90. doi: 10.3934/cpaa.2016.15.73

[15]

Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379

[16]

Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69

[17]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[18]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

[19]

Zhen-Hui Bu, Zhi-Cheng Wang. Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media. Communications on Pure & Applied Analysis, 2016, 15 (1) : 139-160. doi: 10.3934/cpaa.2016.15.139

[20]

Andrew Comech. Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2711-2755. doi: 10.3934/dcds.2013.33.2711

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (116)
  • HTML views (136)
  • Cited by (0)

Other articles
by authors

[Back to Top]