November  2018, 17(6): 2845-2854. doi: 10.3934/cpaa.2018134

Unbounded and blow-up solutions for a delay logistic equation with positive feedback

1. 

University of Pannonia, Veszprém, Hungary

2. 

Shimane University, Matsue, Japan

3. 

University of Oxford, Oxford, United Kingdom

4. 

University of Szeged, Szeged, Hungary

* Corresponding author

Received  September 2017 Revised  January 2018 Published  June 2018

We study bounded, unbounded and blow-up solutions of a delay logistic equation without assuming the dominance of the instantaneous feedback. It is shown that there can exist an exponential (thus unbounded) solution for the nonlinear problem, and in this case the positive equilibrium is always unstable. We obtain a necessary and sufficient condition for the existence of blow-up solutions, and characterize a wide class of such solutions. There is a parameter set such that the non-trivial equilibrium is locally stable but not globally stable due to the co-existence with blow-up solutions.

Citation: István Győri, Yukihiko Nakata, Gergely Röst. Unbounded and blow-up solutions for a delay logistic equation with positive feedback. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2845-2854. doi: 10.3934/cpaa.2018134
References:
[1]

J. A. D. ApplebyI. Győri and D. W. Reynolds, History-dependent decay rates for a logistic equation with infinite delay, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 23-44. doi: 10.1017/S0308210510000016. Google Scholar

[2]

B. BánhelyiT. CsendesT. Krisztin and A. Neumaier, Global attractivity of the zero solution for Wright's equation, SIAM Journal on Applied Dynamical Systems, 13 (2014), 537-563. doi: 10.1137/120904226. Google Scholar

[3]

O. Diekmann, S. A. van Gils, S. M. V. Lunel and H. O. Walther, Delay Equations Functional, Complex and Nonlinear Analysis, Springer Verlag, 1991. doi: 10.1007/978-1-4612-4206-2. Google Scholar

[4]

T. Faria and E. Liz, Boundedness and asymptotic stability for delayed equations of logistic type, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1057-1073. doi: 10.1017/S030821050000281X. Google Scholar

[5]

E. Liz and G. Röst, Dichotomy results for delay differential equations with negative Schwarzian, Nonlinear Analysis: Real World Applications, 11 (2010), 1422-1430. doi: 10.1016/j.nonrwa.2009.02.030. Google Scholar

[6]

K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, 1992. doi: 10.1007/978-94-015-7920-9. Google Scholar

[7]

I. Győri, A new approach to the global asymptotic stability problem in a delay Lotka-Volterra differential equation, Mathematical and Computer Modelling, 31 (2000), 9-28. doi: 10.1016/S0895-7177(00)00043-1. Google Scholar

[8]

I. Győri and F. Hartung, Fundamental solution and asymptotic stability of linear delay differential equations, Dynamics of Continuous, Discrete and Impulsive Systems, 13 (2006), 261-288. Google Scholar

[9]

I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991. Google Scholar

[10]

X. He, Global stability in nonautonomous Lotka-Volterra systems of "pure-delay type", Differential and Integral Equations, 11 (1998), 293-310. Google Scholar

[11]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, San Diego, 1993. Google Scholar

[12]

S. M. Lenhart and C. C. Travis, Global stability of a biological model with time delay, Proc. Amer. Math. Sot., 96 (1986), 75-78. doi: 10.2307/2045656. Google Scholar

[13]

H. Li and R. Yuan, An affirmative answer to the extended Gopalsamy and Liu's conjecture on the global asymptotic stability in a population model, Nonlinear Anal. Real World Appl., 11 (2010), 3295-3308. doi: 10.1016/j.nonrwa.2009.11.022. Google Scholar

[14]

S. Ruan, Delay differential equations in single species dynamics, In Delay Differential Equations and Applications, Springer, (2006), 477-517. doi: 10.1007/1-4020-3647-7_11. Google Scholar

[15]

G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Function, Wiley, New York, 1989. Google Scholar

[16]

Z. Teng, Permanence and stability in non-autonomous logistic systems with infinite delay, Dyn. Syst., 17 (2002), 187-202. doi: 10.1080/14689360110102312. Google Scholar

[17]

J. B. van den Berg and J. Jaquette, A proof of Wright's conjecture arXiv: 1704.00029v1 [mathDS] 31 Mar 2017. doi: 10.1016/j.jde.2018.02.018. Google Scholar

show all references

References:
[1]

J. A. D. ApplebyI. Győri and D. W. Reynolds, History-dependent decay rates for a logistic equation with infinite delay, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 23-44. doi: 10.1017/S0308210510000016. Google Scholar

[2]

B. BánhelyiT. CsendesT. Krisztin and A. Neumaier, Global attractivity of the zero solution for Wright's equation, SIAM Journal on Applied Dynamical Systems, 13 (2014), 537-563. doi: 10.1137/120904226. Google Scholar

[3]

O. Diekmann, S. A. van Gils, S. M. V. Lunel and H. O. Walther, Delay Equations Functional, Complex and Nonlinear Analysis, Springer Verlag, 1991. doi: 10.1007/978-1-4612-4206-2. Google Scholar

[4]

T. Faria and E. Liz, Boundedness and asymptotic stability for delayed equations of logistic type, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1057-1073. doi: 10.1017/S030821050000281X. Google Scholar

[5]

E. Liz and G. Röst, Dichotomy results for delay differential equations with negative Schwarzian, Nonlinear Analysis: Real World Applications, 11 (2010), 1422-1430. doi: 10.1016/j.nonrwa.2009.02.030. Google Scholar

[6]

K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, 1992. doi: 10.1007/978-94-015-7920-9. Google Scholar

[7]

I. Győri, A new approach to the global asymptotic stability problem in a delay Lotka-Volterra differential equation, Mathematical and Computer Modelling, 31 (2000), 9-28. doi: 10.1016/S0895-7177(00)00043-1. Google Scholar

[8]

I. Győri and F. Hartung, Fundamental solution and asymptotic stability of linear delay differential equations, Dynamics of Continuous, Discrete and Impulsive Systems, 13 (2006), 261-288. Google Scholar

[9]

I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991. Google Scholar

[10]

X. He, Global stability in nonautonomous Lotka-Volterra systems of "pure-delay type", Differential and Integral Equations, 11 (1998), 293-310. Google Scholar

[11]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, San Diego, 1993. Google Scholar

[12]

S. M. Lenhart and C. C. Travis, Global stability of a biological model with time delay, Proc. Amer. Math. Sot., 96 (1986), 75-78. doi: 10.2307/2045656. Google Scholar

[13]

H. Li and R. Yuan, An affirmative answer to the extended Gopalsamy and Liu's conjecture on the global asymptotic stability in a population model, Nonlinear Anal. Real World Appl., 11 (2010), 3295-3308. doi: 10.1016/j.nonrwa.2009.11.022. Google Scholar

[14]

S. Ruan, Delay differential equations in single species dynamics, In Delay Differential Equations and Applications, Springer, (2006), 477-517. doi: 10.1007/1-4020-3647-7_11. Google Scholar

[15]

G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Function, Wiley, New York, 1989. Google Scholar

[16]

Z. Teng, Permanence and stability in non-autonomous logistic systems with infinite delay, Dyn. Syst., 17 (2002), 187-202. doi: 10.1080/14689360110102312. Google Scholar

[17]

J. B. van den Berg and J. Jaquette, A proof of Wright's conjecture arXiv: 1704.00029v1 [mathDS] 31 Mar 2017. doi: 10.1016/j.jde.2018.02.018. Google Scholar

Figure 2.1.  Stability region for the positive equilibrium in the $(\alpha,r)$-parameter plane. The shaded region is the stability region given by (2.1) and (2.2). The positive equilibrium is globally stable for $\alpha\le-1$ and is unstable above the stability boundary. Exponential solutions exist on the denoted curve. Blow-up solutions exist for $\alpha>0$, hence we can observe a region where the positive equilibrium is locally stable yet blow-up solutions also exist
[1]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[2]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[3]

Vincent Calvez, Thomas O. Gallouët. Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1175-1208. doi: 10.3934/dcds.2016.36.1175

[4]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[5]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[6]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[7]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[8]

Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617

[9]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[10]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[11]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure & Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[12]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[13]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[14]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

[15]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[16]

José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43

[17]

Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170

[18]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[19]

Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633

[20]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (68)
  • HTML views (117)
  • Cited by (0)

Other articles
by authors

[Back to Top]