• Previous Article
    A positive bound state for an asymptotically linear or superlinear Schrödinger equation in exterior domains
  • CPAA Home
  • This Issue
  • Next Article
    Unbounded and blow-up solutions for a delay logistic equation with positive feedback
November  2018, 17(6): 2813-2844. doi: 10.3934/cpaa.2018133

On variational and topological methods in nonlinear difference equations

1. 

Department of Mathematical Sciences, University of Texas at Dallas Richardson, 75080 USA

2. 

Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México DF, México

Received  December 2017 Revised  March 2018 Published  June 2018

In this paper, first we survey the recent progress in usage of the critical point theory to study the existence of multiple periodic and subharmonic solutions in second order difference equations and discrete Hamiltonian systems with variational structure. Next, we propose a new topological method, based on the application of the equivariant version of the Brouwer degree to study difference equations without an extra assumption on variational structure. New result on the existence of multiple periodic solutions in difference systems (without assuming that they are their variational) satisfying a Nagumo-type condition is obtained. Finally, we also put forward a new direction for further investigations.

Citation: Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133
References:
[1]

R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods and Applications, Marcel Dekker, New York, 1992. Google Scholar

[2]

R. P. AgarwalK. Perera and D. O'Regan, Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Anal., 58 (2004), 69-73. doi: 10.1016/j.na.2003.11.012. Google Scholar

[3]

R. P. AgarwalK. Perera and D. O'Regan, Multiple positive solutions of singular discrete p-Laplacian problems via variational methods, Adv. Difference Equ., 2 (2005), 93-99. Google Scholar

[4]

G. Barletta and P. Candito, Infinitely many constant-sign solutions for a discrete parameter-depending Neumann problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 22 (2015), 453-463. Google Scholar

[5]

D. Bai and Y. Xu, Nontrivial solutions of boundary value problems of second-order difference equations, J. Math. Anal. Appl., 326 (2007), 297-302. doi: 10.1016/j.jmaa.2006.02.091. Google Scholar

[6]

Z. BalanovM. FarzamiradW. Krawcewicz and H. Ruan, Applied equivariant degree, part Ⅱ: Symmetric Hopf bifurcation for functional differential equations, Discrete Contin. Dyn. Syst., 16 (2006), 923-960. doi: 10.3934/dcds.2006.16.923. Google Scholar

[7]

Z. BalanovW. KrawcewiczZ. Li and M. Nguyen, Multiple solutions to implicit symmetric boundary value problems for second order ordinary differential equations (ODEs): Equivariant degree approach, Symmetry, 5 (2013), 287-312. doi: 10.3390/sym5040287. Google Scholar

[8]

Z. BalanovW. Krawcewicz and M. Nguyen, Multiple solutions to symmetric boundary value problems for second order ODEs: equivariant degree approach, Nonlinear Anal., 94 (2014), 45-64. doi: 10.1016/j.na.2013.07.030. Google Scholar

[9]

Z. BalanovW. Krawcewicz and H. Ruan, Hopf bifurcation in a symmetric configuration of lossless transmission lines, Nonlinear Anal. Real World Appl., 8 (2007), 1144-1170. doi: 10.1016/j.nonrwa.2006.04.004. Google Scholar

[10]

Z. BalanovW. KrawcewiczS. Rybicki and H. Steinlein, A short treatise on the equivariant degree theory and its applications, J. Fixed Point Theory Appl., 8 (2010), 1-74. doi: 10.1007/s11784-010-0033-9. Google Scholar

[11]

Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree, American Institute of Mathematical Sciences, 2006. Google Scholar

[12]

G. Bonanno and P. Candito, Nonlinear difference equations investigated via critical point methods, Nonlinear Anal., 70 (2009), 3180-3186. doi: 10.1016/j.na.2008.04.021. Google Scholar

[13]

T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Analysis, TMA, 20 (1993), 1205-1216. doi: 10.1016/0362-546X(93)90151-H. Google Scholar

[14]

T. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., 123 (1995), 3555-3561. doi: 10.2307/2161107. Google Scholar

[15]

C. Brezinski, History of Continued Fractions and Pade Approximants, Springer Verlag, New York, 1991. doi: 10.1007/978-3-642-58169-4. Google Scholar

[16]

A. CabadaA. Iannizzotto and S. Tersian, Multiple solutions for discrete boundary value problems, J. Math. Anal. Appl., 356 (2009), 418-428. doi: 10.1016/j.jmaa.2009.02.038. Google Scholar

[17]

X. C. Cai and J. S. Yu, Existence of periodic solutions for a 2nth-order nonlinear difference equation, J. Math. Anal. Appl., 329 (2007), 870-878. doi: 10.1016/j.jmaa.2006.07.022. Google Scholar

[18]

X. C. Cai and J. S. Yu, Existence theorems of periodic solutions for second-order nonlinear difference equations, Adv. Difference Equ., 2008, Art. ID 247071, 11 pages. Google Scholar

[19]

X. C. CaiJ. S. Yu and Z. M. Guo, Existence of periodic solutions for fourth-order difference equations, Comput. Math. Appl., 50 (2005), 49-55. doi: 10.1016/j.camwa.2005.03.004. Google Scholar

[20]

P. Candito and G. D'Agui, Three solutions for a discrete nonlinear Neumann problem involving the $p$-Laplacian, Adv. Difference Equ., 2010, Art. ID 862016, 11 pages. Google Scholar

[21]

P. Candito and G. D'Agui, Constant-sign solutions for a nonlinear Neumann problem involving the discrete $p$-Laplacian, Opuscula Math., 34 (2014), 683-690. doi: 10.7494/OpMath.2014.34.4.683. Google Scholar

[22]

P. Candito and N. Giovannelli, Multiple solutions for a discrete boundary value problem involving the $p$-Laplacian, Comput. Math. Appl., 56 (2008), 959-964. doi: 10.1016/j.camwa.2008.01.025. Google Scholar

[23]

E. Caspari and G. S. Watson, On the evolutionary importance of cytoplasmic sterility in mosquitos, Evolution, 13 (1959), 568-570. Google Scholar

[24]

K. C. Chang, Critical Point Theory and its Applications (in Chinese), Science and Technical Press, Shanghai, China, 1986. Google Scholar

[25]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0385-8. Google Scholar

[26]

C. F. Che and X. P. Xie, Infinitely many periodic solutions for discrete second order Hamiltonian system with oscillating potentials, Adv. Difference Equ., 2012 (2012), 50, 9 pages. Google Scholar

[27]

P. Chen and H. Fang, Existence of periodic and subharmonic solutions for second order $p$-Laplacian difference equations, Adv. Difference Equ., 2007, Art. ID 42530, 9 pages. Google Scholar

[28]

P. Chen and X. H. Tang, Existence of homoclinic orbits for 2nth-order nonlinear difference equations containing both many advances and retardations, J. Math. Anal. Appl., 381 (2001), 485-505. doi: 10.1016/j.jmaa.2011.02.016. Google Scholar

[29]

Y. Chen and Z. Zhou, Stable periodic solution of a discrete periodic Lotka-Volterra competition system, J. Math. Anal. Appl., 277 (2003), 358-366. doi: 10.1016/S0022-247X(02)00611-X. Google Scholar

[30]

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, 38, American Mathematical Society, Providence, R. I., 1978 Google Scholar

[31]

M. Dabkowski, W. Krawcewicz, Y. Lv, H-P. Wu, Multiple Periodic Solutions for $Γ$-Symmetric Newtonian Systems, J. Differential Equations, (2017), to appear. doi: 10.1016/j.jde.2017.07.027. Google Scholar

[32]

G. D'AguiJ. Mawhin and A. Sciammetta, Positive solutions for a discrete two point nonlinear boundary value problem with $p$-Laplacian, J. Math. Anal. Appl., 447 (2017), 383-397. doi: 10.1016/j.jmaa.2016.10.023. Google Scholar

[33]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7. Google Scholar

[34]

S. N. Elaydi, An Introduction to Difference Equations, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-3110-1. Google Scholar

[35]

F. Faraci and A. Iannizzotto, Multiplicity theorems for discrete boundary value problems, Aequationes Math., 74 (2007), 111-118. doi: 10.1007/s00010-006-2855-5. Google Scholar

[36]

B. FiedlerV. FlunkertP. Hövel and E. Schöll, Delay stabilization of periodic orbits in coupled oscillator systems, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 (2010), 319-341. doi: 10.1098/rsta.2009.0232. Google Scholar

[37]

A. Floer, Witten's complex and infinite-dimensional Morse theory, J. Differential Geom., 30 (1989), 207-221. Google Scholar

[38]

R. Gaines and J. Mawhin, Coincidence Degree, and Nonlinear Differential Equations, Lecture Notes in Mathematics, 568, Springer-Verlag, Berlin-New York, 1977. Google Scholar

[39]

C. Garcia-Azpeitia, Traveling and standing waves in coupled pendula and Newton's cradle, J. Nonlinear Science, (2016), 1767-1787. doi: 10.1007/s00332-016-9318-5. Google Scholar

[40]

C. Garcia-Azpeitia and J. Ize, Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the $n$-body problem, J. Differential Equations, 254 (2013), 2033–2075 doi: 10.1016/j.jde.2012.08.022. Google Scholar

[41]

C. Garcia-Azpeitia and J. Ize, Bifurcation of periodic solutions from a ring configuration in the vortex and filament problems, J. Differential Equations, 252 (2012), 5662–5678 doi: 10.1016/j.jde.2012.01.044. Google Scholar

[42]

J. M. Grandmon, Nonlinear difference equations, bifurcations and chaos: An introduction, Research in Economics, 62 (2008), 122-177. Google Scholar

[43]

I. Gröri and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford University Press, Oxford, 1991. Google Scholar

[44]

H. Gu and T. An, Existence of periodic solutions for a class of second-order discrete Hamiltonian systems, J. Difference Equ. Appl., 21 (2015), 197-208. doi: 10.1080/10236198.2014.993322. Google Scholar

[45]

Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A, 46 (2003), 506-515. doi: 10.1360/03ys9051. Google Scholar

[46]

Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions to subquadratic second-order difference equations, J. London Math. Soc., 68 (2003), 419-430. doi: 10.1112/S0024610703004563. Google Scholar

[47]

Z. M. Guo and J. S. Yu, The Existence of periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems, Nonlinear Anal., 55 (2003), 669-683. doi: 10.1016/j.na.2003.07.019. Google Scholar

[48]

Z. M. Guo and J. S. Yu, Multiplicity results for periodic solutions to second order difference equations, J. Dynam. Differential Equations, 18 (2006), 943-960. doi: 10.1007/s10884-006-9042-1. Google Scholar

[49]

Z. M. Guo and Y. T. Xu, Existence of periodic solutions to a class of second-order neutral differential difference equations, Acta Anal. Funct. Appl., 5 (2003), 13-19. Google Scholar

[50]

E. Hooton, Z. Balanov, W. Krawcewicz and D. Rachinskii, Non-invasive stabilization of periodic orbits in $O_4$-symmetrically coupled systems near a Hopf bifurcation point, Internat. J. Bifur. Chaos Appl. Sci. Engrg. bf, 27 (2017), 1750087. doi: 10.1142/S0218127417500870. Google Scholar

[51]

T. S. He and W. G. Chen, Periodic solutions of second order discrete convex systems involving the $p$-Laplacian, Appl. Math. Comput., 206 (2008), 124-132. doi: 10.1016/j.amc.2008.08.037. Google Scholar

[52]

J. Ize and A. Vignoli, Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications, 8 Walter de Gruyter & Co., Berlin, 2003. doi: 10.1515/9783110200027. Google Scholar

[53]

Q. JiangS. Ma and Z. H. Hu, Existence of multiple periodic solutions for second-order discrete Hamiltonian system with partially periodic potential, Electron. J. Differential Equations, 307 (2016), 1-14. Google Scholar

[54]

P. JebeleanJ. Mawhin and C. Şerban, Morse theory and multiple periodic solutions of some quasilinear difference systems with periodic nonlinearities, Georgian Math. J., 24 (2017), 103-112. doi: 10.1515/gmj-2016-0075. Google Scholar

[55]

V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Boston, 1993. doi: 10.1007/978-94-017-1703-8. Google Scholar

[56]

M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, A Pergamon Press Book The Macmillan Co., New York, 1964. Google Scholar

[57]

M. A. Krasnoselskii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Grundlehren der Mathematischen Wissenschaften, 263. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69409-7. Google Scholar

[58]

W. Krawcewicz and J. H. Wu, Theory of Degrees with Applications to Bifurcations and Differential Equations, Wiley-Interscience and Canadian Mathematics Series of Monographs and Texts, 1997. Google Scholar

[59]

W. KrawcewiczH-P. Wu and S. Yu, Periodic solutions in reversible second order autonomous systems with symmetries, J. Nonlinear Convex Anal., 18 (2017), 1393-1419. Google Scholar

[60]

W. KrawcewiczJ. S. Yu and H. F. Xiao, Multiplicity of periodic solutions to symmetric delay differential equations, J. Fixed Point Theory Appl., 13 (2013), 103-141. doi: 10.1007/s11784-013-0119-2. Google Scholar

[61]

Alexandru KristályMihai Mihăilescu and Vicenţiu Rădulescu, Discrete boundary value problems involving oscillatory nonlinearities: small and large solutions, J. Difference Equ. Appl., 17 (2011), 1431-1440. doi: 10.1080/10236190903555245. Google Scholar

[62]

J. H. Leng, Periodic and subharmonic solutions for 2nth-order $\varphi_c$-Laplacian difference equations containing both advance and retardation, Indag. Math. (N.S.), 27 (2016), 902-913. doi: 10.1016/j.indag.2016.05.002. Google Scholar

[63]

Y. J. Li, The existence of solutions for second-order difference equations, J. Difference Equ. Appl., 12 (2006), 209-212. doi: 10.1080/10236190500539394. Google Scholar

[64]

G. Lin and Z. Zhou, Homoclinic solutions of discrete $φ$-Laplacian equations with mixed nonlinearities, Comm. Pure Appl. Anal., 17 (2018), 1723-1747.Google Scholar

[65]

J. S. LiuS. L. Wang and J. M. Zhang, Nontrivial solutions for discrete boundary value problems with multiple resonance via computations of the critical groups, Nonlinear Anal., 75 (2012), 3809-3820. doi: 10.1016/j.na.2012.02.003. Google Scholar

[66]

S. B. Liu, Multiple periodic solutions for non-linear difference systems involving the p-Laplacian, J. Difference Equ. Appl., 17 (2011), 1591-1598. doi: 10.1080/10236191003730480. Google Scholar

[67]

X. LiuH. P. Shi and Y. B. Zhang, Existence of periodic solutions of second order nonlinear p-Laplacian difference equations, Acta Math. Hungar., 133 (2011), 148-165. doi: 10.1007/s10474-011-0137-8. Google Scholar

[68]

Y. H. Long, Applications of Clark duality to periodic solutions with minimal period for discrete Hamiltonian systems, J. Math. Anal. Appl., 342 (2008), 726-741. doi: 10.1016/j.jmaa.2007.10.075. Google Scholar

[69]

Y. H. Long, Multiplicity results for periodic solutions with prescribed minimal periods to discrete Hamiltonian systems, J. Difference Equ. Appl., 17 (2011), 1499-1518. doi: 10.1080/10236191003657220. Google Scholar

[70]

Y. H. LongZ. M. Guo and H. P. Shi, Multiple periodic solutions with minimal period for second order discrete system, Acta Appl. Math., 110 (2010), 181-193. doi: 10.1007/s10440-008-9396-y. Google Scholar

[71]

Y. H. LongY. B. Zhang and H. P. Shi, Homoclinic solutions of 2nth-order difference equations containing both advance and retardation, Open Math., 14 (2016), 520-530. doi: 10.1515/math-2016-0046. Google Scholar

[72]

J. Mawhin, Periodic solutions of second order nonlinear difference systems with $\varphi$-Laplacian: a variational approach, Nonlinear Anal., 75 (2012), 4672-4687. doi: 10.1016/j.na.2011.11.018. Google Scholar

[73]

J. Mawhin, Periodic solutions of second order Lagrangian difference systems with bounded or singular $\varphi$-Laplacian and periodic potential, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1065-1076. doi: 10.3934/dcdss.2013.6.1065. Google Scholar

[74]

J. Mawhin, A simple proof of multiplicity for periodic solutions of Lagrangian difference systems with relativistic operator and periodic potential, J. Difference Equ. Appl., 22 (2016), 306-315. doi: 10.1080/10236198.2015.1089867. Google Scholar

[75]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Spinger-Verlag, New York Inc., 1989. doi: 10.1007/978-1-4757-2061-7. Google Scholar

[76]

R. M. May, Biological populationobeying difference equaqtions: stable points, stable cycles and chaos, J. Theoret. Biol., 51 (1975), 511-524. Google Scholar

[77]

H. MatsunagaT. Hara and S. Sakata, Global attractivity for a nonlinear difference equation with variable delay, Comput. Math. Appl., 41 (2001), 543-551. doi: 10.1016/S0898-1221(00)00297-2. Google Scholar

[78]

K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics Letters A, 170 (1992), 421-428. Google Scholar

[79]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS. AMS, 65, 1986. doi: 10.1090/cbms/065. Google Scholar

[80]

B. Ricceri, A general multiplicity theorem for certain nonlinear equations in Hilbert spaces, Proc. Amer. Math. Soc., 133 (2005), 3255-3261. doi: 10.1090/S0002-9939-05-08218-3. Google Scholar

[81]

R. Sahadevan and N. Kannagi, Continuous nonpoint symmetries of ordinary difference equations, J. Math. Anal. Appl., 324 (2006), 199-215. doi: 10.1016/j.jmaa.2005.11.072. Google Scholar

[82]

A. N. Sharkovsky, Yu. L. Maistrenko and E. Yu. Romanenko, Difference Equations and their Applications, Kluwer Academic Publishers, Dordrecht, 1993. doi: 10.1007/978-94-011-1763-0. Google Scholar

[83]

D. Smets and M. Willem, Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal., 149 (1997), 266-275. doi: 10.1006/jfan.1996.3121. Google Scholar

[84]

H. P. ShiX. Liu and Y. B. Zhang, Existence of periodic solutions for 2nth-order nonlinear $p$-Laplacian difference equations, Rocky Mountain J. Math., 46 (2016), 1679-1699. doi: 10.1216/RMJ-2016-46-5-1679. Google Scholar

[85]

H. P. Shi and X. J. Zhong, Existence of periodic and subharmonic solutions for second order functional difference equations, Acta Math. Appl. Sin. Engl. Ser., 26 (2010), 229-240. doi: 10.1007/s10255-007-7150-2. Google Scholar

[86]

H. P. Shi and Y. B. Zhang, Existence of periodic solutions for a 2nth-order nonlinear difference equation, Taiwanese J. Math., 20 (2016), 143-160. doi: 10.11650/tjm.20.2016.5844. Google Scholar

[87]

F. H. Tan and Z. M. Guo, Periodic solutions for second-order difference equations with resonance at infinity, J. Difference Equ. Appl., 18 (2012), 149-161. doi: 10.1080/10236191003730498. Google Scholar

[88]

J. P. Tan and Z. Zhou, Boundary value problems for a coupled system of second-order nonlinear difference equations, Adv. Difference Equ., 2017 (2017), 210, 15 pages. doi: 10.1186/s13662-017-1257-4. Google Scholar

[89]

C. L. Tang and X. P. Wu, Periodic solutions for a class of new superquadratic second order Hamiltonian systems, Appl. Math. Lett., 34 (2014), 65-71. doi: 10.1016/j.aml.2014.04.001. Google Scholar

[90]

X. H. Tang and J. S. Yu, Oscillation of nonlinear delay difference equations, J. Math. Anal. Appl., 249 (2000), 476-490. doi: 10.1006/jmaa.2000.6902. Google Scholar

[91]

Y. TianZ. J. Du and W. G. Gao, Existence results for discrete Sturm-Liouville problem via variational methods, J. Difference Equ. Appl., 13 (2007), 467-478. doi: 10.1080/10236190601086451. Google Scholar

[92]

M. Turelli, Cytoplasmic incompatibility in populations with overlappling generations, Evolution, 64 (2009), 232-241. Google Scholar

[93]

D. B. Wang, H. F. Xie and W. Guan, Existence of periodic solutions for nonautonomous second-order discrete Hamiltonian systems, Adv. Difference Equ., 2016 (2016), 309, 7 pages. doi: 10.1186/s13662-016-1036-7. Google Scholar

[94]

Q. Wang and Q. Q. Zhang, Dynamics of a higher-order rational difference equation, J. Appl. Anal. Comput., 7 (2017), 770-787. Google Scholar

[95]

Q. Wang and Z. Zhou, Solutions of the boundary value problem for a $2n$th-order nonlinear difference equation containing both advance and retardation, Adv. Difference Equ., 2013 (2013), 322, 9 pages. Google Scholar

[96]

H. F. Xiao and J. S. Yu, Heteroclinic orbits for a discrete pendulum equation, J. Difference Equ. Appl., 17 (2011), 1267-1280. doi: 10.1080/10236190903167991. Google Scholar

[97]

Y. F. Xue and C. L. Tang, Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems, Appl. Math. Comput., 196 (2008), 494-500. doi: 10.1016/j.amc.2007.06.015. Google Scholar

[98]

Y. F. Xue and C. L. Tang, Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system, Nonlinear Anal., 67 (2007), 2072-2080. doi: 10.1016/j.na.2006.08.038. Google Scholar

[99]

S. H. YanX. P. Wu and C. L. Tang, Multiple periodic solutions for second-order discrete Hamiltonian systems, Appl. Math. Comput., 234 (2014), 142-149. doi: 10.1016/j.amc.2014.01.160. Google Scholar

[100]

J. S. YuH. H. Bin and Z. M. Guo, Periodic solutions for discrete convex Hamiltonian systems via Clarke duality, Discrete Contin. Dyn. Syst., 15 (2006), 939-950. doi: 10.3934/dcds.2006.15.939. Google Scholar

[101]

J. S. YuH. H. Bin and Z. M. Guo, Multiple periodic solutions for discrete Hamiltonian systems, Nonlinear Anal., 66 (2007), 1498-1512. doi: 10.1016/j.na.2006.01.029. Google Scholar

[102]

J. S. YuX. Q. Deng and Z. M. Guo, Periodic solutions of a discrete Hamiltonian system with a change of sign in the potential, J. Math. Anal. Appl., 324 (2006), 1140-1151. doi: 10.1016/j.jmaa.2006.01.013. Google Scholar

[103]

J. S. Yu and Z. M. Guo, Some problems on the global attractivity of linear nonautonomous difference equations, Sci. China Ser. A, 46 (2003), 884-892. doi: 10.1360/02ys0285. Google Scholar

[104]

J. S. Yu and Z. M. Guo, On boundary value problems for a discrete generalized Emden-Fowler equation, J. Differential Equations, 231 (2006), 18-31. doi: 10.1016/j.jde.2006.08.011. Google Scholar

[105]

J. S. YuZ. M. Guo and X. Zou, Periodic solutions of second order self-adjoint difference equations, J. London. Math. Soc., 71 (2005), 146-160. doi: 10.1112/S0024610704005939. Google Scholar

[106]

J. S. YuY. H. Long and Z. M. Guo, Subharmonic solutions with prescribed minimal period of a discrete forced pendulum equation, J. Dynam. Differential Equations, 16 (2004), 575-586. doi: 10.1007/s10884-004-4292-2. Google Scholar

[107]

J. S. YuH. P. Shi and Z. M. Guo, Homoclinic orbits for nonlinear difference equations containing both advance and retardation, J. Math. Anal. Appl., 352 (2009), 799-806. doi: 10.1016/j.jmaa.2008.11.043. Google Scholar

[108]

J. S. Yu and B. Zheng, Multiplicity of periodic solutions for second-order discrete Hamiltonian systems with a small forcing term, Nonlinear Anal., 69 (2008), 3016-3029. doi: 10.1016/j.na.2007.08.069. Google Scholar

[109]

G. Zhang and S. Liu, On a class of semipositone discrete boundary value problems, J. Math. Anal. Appl., 325 (2007), 175-182. doi: 10.1016/j.jmaa.2005.12.047. Google Scholar

[110]

H. Zhang and Z. X. Li, Periodic solutions for a class of nonlinear discrete Hamiltonian systems via critical point theory, J. Difference Equ. Appl., 16 (2010), 1381-1391. doi: 10.1080/10236190902821689. Google Scholar

[111]

Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part, Commun. Pure Appl. Anal., 14 (2015), 1929-1940. doi: 10.3934/cpaa.2015.14.1929. Google Scholar

[112]

Q. Q. Zhang, Homoclinic orbits for a class of discrete periodic Hamiltonian systems, Proc. Amer. Math. Soc., 143 (2015), 3155-3163. doi: 10.1090/S0002-9939-2015-12107-7. Google Scholar

[113]

Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Comm. Pure Appl. Anal., (accepted for publication).Google Scholar

[114]

X. Y. Zhang, Notes on periodic solutions for a nonlinear discrete system involving the $p$-Laplacian, Bull. Malays. Math. Sci. Soc., 37 (2014), 499-510. Google Scholar

[115]

B. Zheng and Q. Q. Zhang, Existence and multiplicity of solutions of second-order difference boundary value problems, Acta Appl. Math., 110 (2010), 131-152. doi: 10.1007/s10440-008-9389-x. Google Scholar

[116]

Z. Zhou and D. F. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 58 (2015), 781-790. doi: 10.1007/s11425-014-4883-2. Google Scholar

[117]

Z. Zhou and M. T. Su, Boundary value problems for $2n$-order $φ_c$-Laplacian difference equations containing both advance and retardation, Appl. Math. Lett., 41 (2015), 7-11. doi: 10.1016/j.aml.2014.10.006. Google Scholar

[118]

Z. ZhouJ. S. Yu and Y. M. Chen, Periodic solutions of a $2n$th-order nonlinear difference equation, Sci. China Math., 53 (2010), 41-50. doi: 10.1007/s11425-009-0167-7. Google Scholar

[119]

Z. Zhou and J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differential Equations, 249 (2010), 1199-1212. doi: 10.1016/j.jde.2010.03.010. Google Scholar

[120]

Z. ZhouJ. S. Yu and Y. M. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math., 54 (2011), 83-93. doi: 10.1007/s11425-010-4101-9. Google Scholar

[121]

Z. ZhouJ. S. Yu and Y. M. Chen, On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity, Nonlinearity, 23 (2010), 1727-1740. doi: 10.1088/0951-7715/23/7/011. Google Scholar

[122]

Z. ZhouJ. S. Yu and Z. M. Guo, Periodic solutions of higher-dimensional discrete systems, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 1013-1022. doi: 10.1017/S0308210500003607. Google Scholar

[123]

Z. ZhouJ. S. Yu and Z. M. Guo, The existence of periodic and subharmonic solutions to subquadratic discrete Hamiltonian systems, ANZIAM J., 47 (2005), 89-102. doi: 10.1017/S1446181100009792. Google Scholar

[124]

B. S. Zhu and J. S. Yu, Multiple positive solutions for resonant difference equations, Math. Comput. Modelling, 49 (2009), 1928-1936. doi: 10.1016/j.mcm.2008.09.009. Google Scholar

show all references

References:
[1]

R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods and Applications, Marcel Dekker, New York, 1992. Google Scholar

[2]

R. P. AgarwalK. Perera and D. O'Regan, Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Anal., 58 (2004), 69-73. doi: 10.1016/j.na.2003.11.012. Google Scholar

[3]

R. P. AgarwalK. Perera and D. O'Regan, Multiple positive solutions of singular discrete p-Laplacian problems via variational methods, Adv. Difference Equ., 2 (2005), 93-99. Google Scholar

[4]

G. Barletta and P. Candito, Infinitely many constant-sign solutions for a discrete parameter-depending Neumann problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 22 (2015), 453-463. Google Scholar

[5]

D. Bai and Y. Xu, Nontrivial solutions of boundary value problems of second-order difference equations, J. Math. Anal. Appl., 326 (2007), 297-302. doi: 10.1016/j.jmaa.2006.02.091. Google Scholar

[6]

Z. BalanovM. FarzamiradW. Krawcewicz and H. Ruan, Applied equivariant degree, part Ⅱ: Symmetric Hopf bifurcation for functional differential equations, Discrete Contin. Dyn. Syst., 16 (2006), 923-960. doi: 10.3934/dcds.2006.16.923. Google Scholar

[7]

Z. BalanovW. KrawcewiczZ. Li and M. Nguyen, Multiple solutions to implicit symmetric boundary value problems for second order ordinary differential equations (ODEs): Equivariant degree approach, Symmetry, 5 (2013), 287-312. doi: 10.3390/sym5040287. Google Scholar

[8]

Z. BalanovW. Krawcewicz and M. Nguyen, Multiple solutions to symmetric boundary value problems for second order ODEs: equivariant degree approach, Nonlinear Anal., 94 (2014), 45-64. doi: 10.1016/j.na.2013.07.030. Google Scholar

[9]

Z. BalanovW. Krawcewicz and H. Ruan, Hopf bifurcation in a symmetric configuration of lossless transmission lines, Nonlinear Anal. Real World Appl., 8 (2007), 1144-1170. doi: 10.1016/j.nonrwa.2006.04.004. Google Scholar

[10]

Z. BalanovW. KrawcewiczS. Rybicki and H. Steinlein, A short treatise on the equivariant degree theory and its applications, J. Fixed Point Theory Appl., 8 (2010), 1-74. doi: 10.1007/s11784-010-0033-9. Google Scholar

[11]

Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree, American Institute of Mathematical Sciences, 2006. Google Scholar

[12]

G. Bonanno and P. Candito, Nonlinear difference equations investigated via critical point methods, Nonlinear Anal., 70 (2009), 3180-3186. doi: 10.1016/j.na.2008.04.021. Google Scholar

[13]

T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Analysis, TMA, 20 (1993), 1205-1216. doi: 10.1016/0362-546X(93)90151-H. Google Scholar

[14]

T. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., 123 (1995), 3555-3561. doi: 10.2307/2161107. Google Scholar

[15]

C. Brezinski, History of Continued Fractions and Pade Approximants, Springer Verlag, New York, 1991. doi: 10.1007/978-3-642-58169-4. Google Scholar

[16]

A. CabadaA. Iannizzotto and S. Tersian, Multiple solutions for discrete boundary value problems, J. Math. Anal. Appl., 356 (2009), 418-428. doi: 10.1016/j.jmaa.2009.02.038. Google Scholar

[17]

X. C. Cai and J. S. Yu, Existence of periodic solutions for a 2nth-order nonlinear difference equation, J. Math. Anal. Appl., 329 (2007), 870-878. doi: 10.1016/j.jmaa.2006.07.022. Google Scholar

[18]

X. C. Cai and J. S. Yu, Existence theorems of periodic solutions for second-order nonlinear difference equations, Adv. Difference Equ., 2008, Art. ID 247071, 11 pages. Google Scholar

[19]

X. C. CaiJ. S. Yu and Z. M. Guo, Existence of periodic solutions for fourth-order difference equations, Comput. Math. Appl., 50 (2005), 49-55. doi: 10.1016/j.camwa.2005.03.004. Google Scholar

[20]

P. Candito and G. D'Agui, Three solutions for a discrete nonlinear Neumann problem involving the $p$-Laplacian, Adv. Difference Equ., 2010, Art. ID 862016, 11 pages. Google Scholar

[21]

P. Candito and G. D'Agui, Constant-sign solutions for a nonlinear Neumann problem involving the discrete $p$-Laplacian, Opuscula Math., 34 (2014), 683-690. doi: 10.7494/OpMath.2014.34.4.683. Google Scholar

[22]

P. Candito and N. Giovannelli, Multiple solutions for a discrete boundary value problem involving the $p$-Laplacian, Comput. Math. Appl., 56 (2008), 959-964. doi: 10.1016/j.camwa.2008.01.025. Google Scholar

[23]

E. Caspari and G. S. Watson, On the evolutionary importance of cytoplasmic sterility in mosquitos, Evolution, 13 (1959), 568-570. Google Scholar

[24]

K. C. Chang, Critical Point Theory and its Applications (in Chinese), Science and Technical Press, Shanghai, China, 1986. Google Scholar

[25]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0385-8. Google Scholar

[26]

C. F. Che and X. P. Xie, Infinitely many periodic solutions for discrete second order Hamiltonian system with oscillating potentials, Adv. Difference Equ., 2012 (2012), 50, 9 pages. Google Scholar

[27]

P. Chen and H. Fang, Existence of periodic and subharmonic solutions for second order $p$-Laplacian difference equations, Adv. Difference Equ., 2007, Art. ID 42530, 9 pages. Google Scholar

[28]

P. Chen and X. H. Tang, Existence of homoclinic orbits for 2nth-order nonlinear difference equations containing both many advances and retardations, J. Math. Anal. Appl., 381 (2001), 485-505. doi: 10.1016/j.jmaa.2011.02.016. Google Scholar

[29]

Y. Chen and Z. Zhou, Stable periodic solution of a discrete periodic Lotka-Volterra competition system, J. Math. Anal. Appl., 277 (2003), 358-366. doi: 10.1016/S0022-247X(02)00611-X. Google Scholar

[30]

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, 38, American Mathematical Society, Providence, R. I., 1978 Google Scholar

[31]

M. Dabkowski, W. Krawcewicz, Y. Lv, H-P. Wu, Multiple Periodic Solutions for $Γ$-Symmetric Newtonian Systems, J. Differential Equations, (2017), to appear. doi: 10.1016/j.jde.2017.07.027. Google Scholar

[32]

G. D'AguiJ. Mawhin and A. Sciammetta, Positive solutions for a discrete two point nonlinear boundary value problem with $p$-Laplacian, J. Math. Anal. Appl., 447 (2017), 383-397. doi: 10.1016/j.jmaa.2016.10.023. Google Scholar

[33]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7. Google Scholar

[34]

S. N. Elaydi, An Introduction to Difference Equations, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-3110-1. Google Scholar

[35]

F. Faraci and A. Iannizzotto, Multiplicity theorems for discrete boundary value problems, Aequationes Math., 74 (2007), 111-118. doi: 10.1007/s00010-006-2855-5. Google Scholar

[36]

B. FiedlerV. FlunkertP. Hövel and E. Schöll, Delay stabilization of periodic orbits in coupled oscillator systems, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 (2010), 319-341. doi: 10.1098/rsta.2009.0232. Google Scholar

[37]

A. Floer, Witten's complex and infinite-dimensional Morse theory, J. Differential Geom., 30 (1989), 207-221. Google Scholar

[38]

R. Gaines and J. Mawhin, Coincidence Degree, and Nonlinear Differential Equations, Lecture Notes in Mathematics, 568, Springer-Verlag, Berlin-New York, 1977. Google Scholar

[39]

C. Garcia-Azpeitia, Traveling and standing waves in coupled pendula and Newton's cradle, J. Nonlinear Science, (2016), 1767-1787. doi: 10.1007/s00332-016-9318-5. Google Scholar

[40]

C. Garcia-Azpeitia and J. Ize, Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the $n$-body problem, J. Differential Equations, 254 (2013), 2033–2075 doi: 10.1016/j.jde.2012.08.022. Google Scholar

[41]

C. Garcia-Azpeitia and J. Ize, Bifurcation of periodic solutions from a ring configuration in the vortex and filament problems, J. Differential Equations, 252 (2012), 5662–5678 doi: 10.1016/j.jde.2012.01.044. Google Scholar

[42]

J. M. Grandmon, Nonlinear difference equations, bifurcations and chaos: An introduction, Research in Economics, 62 (2008), 122-177. Google Scholar

[43]

I. Gröri and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford University Press, Oxford, 1991. Google Scholar

[44]

H. Gu and T. An, Existence of periodic solutions for a class of second-order discrete Hamiltonian systems, J. Difference Equ. Appl., 21 (2015), 197-208. doi: 10.1080/10236198.2014.993322. Google Scholar

[45]

Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A, 46 (2003), 506-515. doi: 10.1360/03ys9051. Google Scholar

[46]

Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions to subquadratic second-order difference equations, J. London Math. Soc., 68 (2003), 419-430. doi: 10.1112/S0024610703004563. Google Scholar

[47]

Z. M. Guo and J. S. Yu, The Existence of periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems, Nonlinear Anal., 55 (2003), 669-683. doi: 10.1016/j.na.2003.07.019. Google Scholar

[48]

Z. M. Guo and J. S. Yu, Multiplicity results for periodic solutions to second order difference equations, J. Dynam. Differential Equations, 18 (2006), 943-960. doi: 10.1007/s10884-006-9042-1. Google Scholar

[49]

Z. M. Guo and Y. T. Xu, Existence of periodic solutions to a class of second-order neutral differential difference equations, Acta Anal. Funct. Appl., 5 (2003), 13-19. Google Scholar

[50]

E. Hooton, Z. Balanov, W. Krawcewicz and D. Rachinskii, Non-invasive stabilization of periodic orbits in $O_4$-symmetrically coupled systems near a Hopf bifurcation point, Internat. J. Bifur. Chaos Appl. Sci. Engrg. bf, 27 (2017), 1750087. doi: 10.1142/S0218127417500870. Google Scholar

[51]

T. S. He and W. G. Chen, Periodic solutions of second order discrete convex systems involving the $p$-Laplacian, Appl. Math. Comput., 206 (2008), 124-132. doi: 10.1016/j.amc.2008.08.037. Google Scholar

[52]

J. Ize and A. Vignoli, Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications, 8 Walter de Gruyter & Co., Berlin, 2003. doi: 10.1515/9783110200027. Google Scholar

[53]

Q. JiangS. Ma and Z. H. Hu, Existence of multiple periodic solutions for second-order discrete Hamiltonian system with partially periodic potential, Electron. J. Differential Equations, 307 (2016), 1-14. Google Scholar

[54]

P. JebeleanJ. Mawhin and C. Şerban, Morse theory and multiple periodic solutions of some quasilinear difference systems with periodic nonlinearities, Georgian Math. J., 24 (2017), 103-112. doi: 10.1515/gmj-2016-0075. Google Scholar

[55]

V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Boston, 1993. doi: 10.1007/978-94-017-1703-8. Google Scholar

[56]

M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, A Pergamon Press Book The Macmillan Co., New York, 1964. Google Scholar

[57]

M. A. Krasnoselskii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Grundlehren der Mathematischen Wissenschaften, 263. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69409-7. Google Scholar

[58]

W. Krawcewicz and J. H. Wu, Theory of Degrees with Applications to Bifurcations and Differential Equations, Wiley-Interscience and Canadian Mathematics Series of Monographs and Texts, 1997. Google Scholar

[59]

W. KrawcewiczH-P. Wu and S. Yu, Periodic solutions in reversible second order autonomous systems with symmetries, J. Nonlinear Convex Anal., 18 (2017), 1393-1419. Google Scholar

[60]

W. KrawcewiczJ. S. Yu and H. F. Xiao, Multiplicity of periodic solutions to symmetric delay differential equations, J. Fixed Point Theory Appl., 13 (2013), 103-141. doi: 10.1007/s11784-013-0119-2. Google Scholar

[61]

Alexandru KristályMihai Mihăilescu and Vicenţiu Rădulescu, Discrete boundary value problems involving oscillatory nonlinearities: small and large solutions, J. Difference Equ. Appl., 17 (2011), 1431-1440. doi: 10.1080/10236190903555245. Google Scholar

[62]

J. H. Leng, Periodic and subharmonic solutions for 2nth-order $\varphi_c$-Laplacian difference equations containing both advance and retardation, Indag. Math. (N.S.), 27 (2016), 902-913. doi: 10.1016/j.indag.2016.05.002. Google Scholar

[63]

Y. J. Li, The existence of solutions for second-order difference equations, J. Difference Equ. Appl., 12 (2006), 209-212. doi: 10.1080/10236190500539394. Google Scholar

[64]

G. Lin and Z. Zhou, Homoclinic solutions of discrete $φ$-Laplacian equations with mixed nonlinearities, Comm. Pure Appl. Anal., 17 (2018), 1723-1747.Google Scholar

[65]

J. S. LiuS. L. Wang and J. M. Zhang, Nontrivial solutions for discrete boundary value problems with multiple resonance via computations of the critical groups, Nonlinear Anal., 75 (2012), 3809-3820. doi: 10.1016/j.na.2012.02.003. Google Scholar

[66]

S. B. Liu, Multiple periodic solutions for non-linear difference systems involving the p-Laplacian, J. Difference Equ. Appl., 17 (2011), 1591-1598. doi: 10.1080/10236191003730480. Google Scholar

[67]

X. LiuH. P. Shi and Y. B. Zhang, Existence of periodic solutions of second order nonlinear p-Laplacian difference equations, Acta Math. Hungar., 133 (2011), 148-165. doi: 10.1007/s10474-011-0137-8. Google Scholar

[68]

Y. H. Long, Applications of Clark duality to periodic solutions with minimal period for discrete Hamiltonian systems, J. Math. Anal. Appl., 342 (2008), 726-741. doi: 10.1016/j.jmaa.2007.10.075. Google Scholar

[69]

Y. H. Long, Multiplicity results for periodic solutions with prescribed minimal periods to discrete Hamiltonian systems, J. Difference Equ. Appl., 17 (2011), 1499-1518. doi: 10.1080/10236191003657220. Google Scholar

[70]

Y. H. LongZ. M. Guo and H. P. Shi, Multiple periodic solutions with minimal period for second order discrete system, Acta Appl. Math., 110 (2010), 181-193. doi: 10.1007/s10440-008-9396-y. Google Scholar

[71]

Y. H. LongY. B. Zhang and H. P. Shi, Homoclinic solutions of 2nth-order difference equations containing both advance and retardation, Open Math., 14 (2016), 520-530. doi: 10.1515/math-2016-0046. Google Scholar

[72]

J. Mawhin, Periodic solutions of second order nonlinear difference systems with $\varphi$-Laplacian: a variational approach, Nonlinear Anal., 75 (2012), 4672-4687. doi: 10.1016/j.na.2011.11.018. Google Scholar

[73]

J. Mawhin, Periodic solutions of second order Lagrangian difference systems with bounded or singular $\varphi$-Laplacian and periodic potential, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1065-1076. doi: 10.3934/dcdss.2013.6.1065. Google Scholar

[74]

J. Mawhin, A simple proof of multiplicity for periodic solutions of Lagrangian difference systems with relativistic operator and periodic potential, J. Difference Equ. Appl., 22 (2016), 306-315. doi: 10.1080/10236198.2015.1089867. Google Scholar

[75]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Spinger-Verlag, New York Inc., 1989. doi: 10.1007/978-1-4757-2061-7. Google Scholar

[76]

R. M. May, Biological populationobeying difference equaqtions: stable points, stable cycles and chaos, J. Theoret. Biol., 51 (1975), 511-524. Google Scholar

[77]

H. MatsunagaT. Hara and S. Sakata, Global attractivity for a nonlinear difference equation with variable delay, Comput. Math. Appl., 41 (2001), 543-551. doi: 10.1016/S0898-1221(00)00297-2. Google Scholar

[78]

K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics Letters A, 170 (1992), 421-428. Google Scholar

[79]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS. AMS, 65, 1986. doi: 10.1090/cbms/065. Google Scholar

[80]

B. Ricceri, A general multiplicity theorem for certain nonlinear equations in Hilbert spaces, Proc. Amer. Math. Soc., 133 (2005), 3255-3261. doi: 10.1090/S0002-9939-05-08218-3. Google Scholar

[81]

R. Sahadevan and N. Kannagi, Continuous nonpoint symmetries of ordinary difference equations, J. Math. Anal. Appl., 324 (2006), 199-215. doi: 10.1016/j.jmaa.2005.11.072. Google Scholar

[82]

A. N. Sharkovsky, Yu. L. Maistrenko and E. Yu. Romanenko, Difference Equations and their Applications, Kluwer Academic Publishers, Dordrecht, 1993. doi: 10.1007/978-94-011-1763-0. Google Scholar

[83]

D. Smets and M. Willem, Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal., 149 (1997), 266-275. doi: 10.1006/jfan.1996.3121. Google Scholar

[84]

H. P. ShiX. Liu and Y. B. Zhang, Existence of periodic solutions for 2nth-order nonlinear $p$-Laplacian difference equations, Rocky Mountain J. Math., 46 (2016), 1679-1699. doi: 10.1216/RMJ-2016-46-5-1679. Google Scholar

[85]

H. P. Shi and X. J. Zhong, Existence of periodic and subharmonic solutions for second order functional difference equations, Acta Math. Appl. Sin. Engl. Ser., 26 (2010), 229-240. doi: 10.1007/s10255-007-7150-2. Google Scholar

[86]

H. P. Shi and Y. B. Zhang, Existence of periodic solutions for a 2nth-order nonlinear difference equation, Taiwanese J. Math., 20 (2016), 143-160. doi: 10.11650/tjm.20.2016.5844. Google Scholar

[87]

F. H. Tan and Z. M. Guo, Periodic solutions for second-order difference equations with resonance at infinity, J. Difference Equ. Appl., 18 (2012), 149-161. doi: 10.1080/10236191003730498. Google Scholar

[88]

J. P. Tan and Z. Zhou, Boundary value problems for a coupled system of second-order nonlinear difference equations, Adv. Difference Equ., 2017 (2017), 210, 15 pages. doi: 10.1186/s13662-017-1257-4. Google Scholar

[89]

C. L. Tang and X. P. Wu, Periodic solutions for a class of new superquadratic second order Hamiltonian systems, Appl. Math. Lett., 34 (2014), 65-71. doi: 10.1016/j.aml.2014.04.001. Google Scholar

[90]

X. H. Tang and J. S. Yu, Oscillation of nonlinear delay difference equations, J. Math. Anal. Appl., 249 (2000), 476-490. doi: 10.1006/jmaa.2000.6902. Google Scholar

[91]

Y. TianZ. J. Du and W. G. Gao, Existence results for discrete Sturm-Liouville problem via variational methods, J. Difference Equ. Appl., 13 (2007), 467-478. doi: 10.1080/10236190601086451. Google Scholar

[92]

M. Turelli, Cytoplasmic incompatibility in populations with overlappling generations, Evolution, 64 (2009), 232-241. Google Scholar

[93]

D. B. Wang, H. F. Xie and W. Guan, Existence of periodic solutions for nonautonomous second-order discrete Hamiltonian systems, Adv. Difference Equ., 2016 (2016), 309, 7 pages. doi: 10.1186/s13662-016-1036-7. Google Scholar

[94]

Q. Wang and Q. Q. Zhang, Dynamics of a higher-order rational difference equation, J. Appl. Anal. Comput., 7 (2017), 770-787. Google Scholar

[95]

Q. Wang and Z. Zhou, Solutions of the boundary value problem for a $2n$th-order nonlinear difference equation containing both advance and retardation, Adv. Difference Equ., 2013 (2013), 322, 9 pages. Google Scholar

[96]

H. F. Xiao and J. S. Yu, Heteroclinic orbits for a discrete pendulum equation, J. Difference Equ. Appl., 17 (2011), 1267-1280. doi: 10.1080/10236190903167991. Google Scholar

[97]

Y. F. Xue and C. L. Tang, Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems, Appl. Math. Comput., 196 (2008), 494-500. doi: 10.1016/j.amc.2007.06.015. Google Scholar

[98]

Y. F. Xue and C. L. Tang, Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system, Nonlinear Anal., 67 (2007), 2072-2080. doi: 10.1016/j.na.2006.08.038. Google Scholar

[99]

S. H. YanX. P. Wu and C. L. Tang, Multiple periodic solutions for second-order discrete Hamiltonian systems, Appl. Math. Comput., 234 (2014), 142-149. doi: 10.1016/j.amc.2014.01.160. Google Scholar

[100]

J. S. YuH. H. Bin and Z. M. Guo, Periodic solutions for discrete convex Hamiltonian systems via Clarke duality, Discrete Contin. Dyn. Syst., 15 (2006), 939-950. doi: 10.3934/dcds.2006.15.939. Google Scholar

[101]

J. S. YuH. H. Bin and Z. M. Guo, Multiple periodic solutions for discrete Hamiltonian systems, Nonlinear Anal., 66 (2007), 1498-1512. doi: 10.1016/j.na.2006.01.029. Google Scholar

[102]

J. S. YuX. Q. Deng and Z. M. Guo, Periodic solutions of a discrete Hamiltonian system with a change of sign in the potential, J. Math. Anal. Appl., 324 (2006), 1140-1151. doi: 10.1016/j.jmaa.2006.01.013. Google Scholar

[103]

J. S. Yu and Z. M. Guo, Some problems on the global attractivity of linear nonautonomous difference equations, Sci. China Ser. A, 46 (2003), 884-892. doi: 10.1360/02ys0285. Google Scholar

[104]

J. S. Yu and Z. M. Guo, On boundary value problems for a discrete generalized Emden-Fowler equation, J. Differential Equations, 231 (2006), 18-31. doi: 10.1016/j.jde.2006.08.011. Google Scholar

[105]

J. S. YuZ. M. Guo and X. Zou, Periodic solutions of second order self-adjoint difference equations, J. London. Math. Soc., 71 (2005), 146-160. doi: 10.1112/S0024610704005939. Google Scholar

[106]

J. S. YuY. H. Long and Z. M. Guo, Subharmonic solutions with prescribed minimal period of a discrete forced pendulum equation, J. Dynam. Differential Equations, 16 (2004), 575-586. doi: 10.1007/s10884-004-4292-2. Google Scholar

[107]

J. S. YuH. P. Shi and Z. M. Guo, Homoclinic orbits for nonlinear difference equations containing both advance and retardation, J. Math. Anal. Appl., 352 (2009), 799-806. doi: 10.1016/j.jmaa.2008.11.043. Google Scholar

[108]

J. S. Yu and B. Zheng, Multiplicity of periodic solutions for second-order discrete Hamiltonian systems with a small forcing term, Nonlinear Anal., 69 (2008), 3016-3029. doi: 10.1016/j.na.2007.08.069. Google Scholar

[109]

G. Zhang and S. Liu, On a class of semipositone discrete boundary value problems, J. Math. Anal. Appl., 325 (2007), 175-182. doi: 10.1016/j.jmaa.2005.12.047. Google Scholar

[110]

H. Zhang and Z. X. Li, Periodic solutions for a class of nonlinear discrete Hamiltonian systems via critical point theory, J. Difference Equ. Appl., 16 (2010), 1381-1391. doi: 10.1080/10236190902821689. Google Scholar

[111]

Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part, Commun. Pure Appl. Anal., 14 (2015), 1929-1940. doi: 10.3934/cpaa.2015.14.1929. Google Scholar

[112]

Q. Q. Zhang, Homoclinic orbits for a class of discrete periodic Hamiltonian systems, Proc. Amer. Math. Soc., 143 (2015), 3155-3163. doi: 10.1090/S0002-9939-2015-12107-7. Google Scholar

[113]

Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Comm. Pure Appl. Anal., (accepted for publication).Google Scholar

[114]

X. Y. Zhang, Notes on periodic solutions for a nonlinear discrete system involving the $p$-Laplacian, Bull. Malays. Math. Sci. Soc., 37 (2014), 499-510. Google Scholar

[115]

B. Zheng and Q. Q. Zhang, Existence and multiplicity of solutions of second-order difference boundary value problems, Acta Appl. Math., 110 (2010), 131-152. doi: 10.1007/s10440-008-9389-x. Google Scholar

[116]

Z. Zhou and D. F. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 58 (2015), 781-790. doi: 10.1007/s11425-014-4883-2. Google Scholar

[117]

Z. Zhou and M. T. Su, Boundary value problems for $2n$-order $φ_c$-Laplacian difference equations containing both advance and retardation, Appl. Math. Lett., 41 (2015), 7-11. doi: 10.1016/j.aml.2014.10.006. Google Scholar

[118]

Z. ZhouJ. S. Yu and Y. M. Chen, Periodic solutions of a $2n$th-order nonlinear difference equation, Sci. China Math., 53 (2010), 41-50. doi: 10.1007/s11425-009-0167-7. Google Scholar

[119]

Z. Zhou and J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differential Equations, 249 (2010), 1199-1212. doi: 10.1016/j.jde.2010.03.010. Google Scholar

[120]

Z. ZhouJ. S. Yu and Y. M. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math., 54 (2011), 83-93. doi: 10.1007/s11425-010-4101-9. Google Scholar

[121]

Z. ZhouJ. S. Yu and Y. M. Chen, On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity, Nonlinearity, 23 (2010), 1727-1740. doi: 10.1088/0951-7715/23/7/011. Google Scholar

[122]

Z. ZhouJ. S. Yu and Z. M. Guo, Periodic solutions of higher-dimensional discrete systems, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 1013-1022. doi: 10.1017/S0308210500003607. Google Scholar

[123]

Z. ZhouJ. S. Yu and Z. M. Guo, The existence of periodic and subharmonic solutions to subquadratic discrete Hamiltonian systems, ANZIAM J., 47 (2005), 89-102. doi: 10.1017/S1446181100009792. Google Scholar

[124]

B. S. Zhu and J. S. Yu, Multiple positive solutions for resonant difference equations, Math. Comput. Modelling, 49 (2009), 1928-1936. doi: 10.1016/j.mcm.2008.09.009. Google Scholar

[1]

Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017

[2]

Jianshe Yu, Honghua Bin, Zhiming Guo. Periodic solutions for discrete convex Hamiltonian systems via Clarke duality. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 939-950. doi: 10.3934/dcds.2006.15.939

[3]

S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271

[4]

Dario Bambusi, D. Vella. Quasi periodic breathers in Hamiltonian lattices with symmetries. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 389-399. doi: 10.3934/dcdsb.2002.2.389

[5]

Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069

[6]

Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059

[7]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[8]

Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835

[9]

Zalman Balanov, Meymanat Farzamirad, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree. part II: Symmetric Hopf bifurcations of functional differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 923-960. doi: 10.3934/dcds.2006.16.923

[10]

Juan Sánchez, Marta Net, José M. Vega. Amplitude equations close to a triple-(+1) bifurcation point of D4-symmetric periodic orbits in O(2)-equivariant systems. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1357-1380. doi: 10.3934/dcdsb.2006.6.1357

[11]

Małgorzata Migda, Ewa Schmeidel, Małgorzata Zdanowicz. Periodic solutions of a $2$-dimensional system of neutral difference equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 359-367. doi: 10.3934/dcdsb.2018024

[12]

Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315

[13]

Denis Pennequin. Existence of almost periodic solutions of discrete time equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 51-60. doi: 10.3934/dcds.2001.7.51

[14]

Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985

[15]

Mitsuru Shibayama. Periodic solutions for a prescribed-energy problem of singular Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2705-2715. doi: 10.3934/dcds.2017116

[16]

Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361

[17]

Laura Olian Fannio. Multiple periodic solutions of Hamiltonian systems with strong resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 251-264. doi: 10.3934/dcds.1997.3.251

[18]

Giuseppe Cordaro. Existence and location of periodic solutions to convex and non coercive Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 983-996. doi: 10.3934/dcds.2005.12.983

[19]

Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024

[20]

Liang Ding, Rongrong Tian, Jinlong Wei. Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1617-1625. doi: 10.3934/dcdsb.2018222

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (93)
  • HTML views (135)
  • Cited by (0)

[Back to Top]