# American Institute of Mathematical Sciences

September 2018, 17(5): 1993-2010. doi: 10.3934/cpaa.2018095

## The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials

 1 Department of Mathematics Education, Incheon National University, Incheon 22012, Republic of Korea 2 Department of Mathematics Education, Korea University, Seoul 02841, Republic of Korea

* Corresponding author: Yong-Cheol Kim

Received  August 2017 Revised  January 2018 Published  April 2018

In this paper, we prove the Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators $L_K+V$ with nonnegative potentials $V∈ L^q_{\rm{loc}}(\mathbb{R}^n)$ for $q>\frac{n}{2s}$ with $0 < s < 1$ and $n>2s$; that is to say, we obtain the existence of a fundamental solution $\mathfrak{e}_V$ for $L_K+V$ satisfying
 $\begin{equation*}\bigl(L_K+V\bigr)\mathfrak{e}_V = \delta _0\,\,\text{ in$\mathbb{R}^n$}\end{equation*}$
in the distribution sense, where $\delta _0$ denotes the Dirac delta mass at the origin. In addition, we obtain a decay of the fundamental solution $\mathfrak{e}_V$.
Citation: Woocheol Choi, Yong-Cheol Kim. The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1993-2010. doi: 10.3934/cpaa.2018095
##### References:
 [1] C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Comm. Pure and Appl. Anal., 15 (2016), 657-699. [2] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. P.D.E., 32 (2007), 1245-1260. [3] W. Choi and Y.-C. Kim, Lp-mapping properties for nonlocal Schrödinger operators with certain potential, preprint, arXiv: math/0605406. [4] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. [5] L. Ehrenpreis, Solution of some problems of division. Ⅰ. Division by a polynomial of derivation, Amer. J. Math., 76 (1954), 883-903. [6] L. Ehrenpreis, Solution of some problems of division. Ⅰ. Division by a polynomial of derivation, Amer. J. Math., 77 (1955), 286-292. [7] M. Fall and T. Weth, Liouville theorems for a general class of nonlocal operators, Potential. Anal., 45 (2016), 187-200. [8] Q. Han and F. Lin, Elliptic Partial Differential Equations Courant Lecture Notes in Mathematics, American Mathematical Society, 1997. [9] T. Kuusi, G. Mingione and Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys., 337 (2015), 1317-1368. [10] N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York, 1972. [11] B. Malgrange, Existence et approximation des solutions des équations aux d'erivées partielles et des équations de convolution, Ann. Inst. Fourier, 6 (1955/56), 271-355. [12] M. Reed and B. Simon, Functional Analysis I,Methods of Modern Mathematical Physics, Academic Press, 1970. [13] W. Rudin, Functional Analysis 2nd edition, International Series in Pure and Applied Mathematics. McGraw-Hill, 1991. [14] R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. [15] E. M. Stein, Singular Integrals and Differentiability, Princeton Univ. Press, 1970.

show all references

##### References:
 [1] C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Comm. Pure and Appl. Anal., 15 (2016), 657-699. [2] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. P.D.E., 32 (2007), 1245-1260. [3] W. Choi and Y.-C. Kim, Lp-mapping properties for nonlocal Schrödinger operators with certain potential, preprint, arXiv: math/0605406. [4] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. [5] L. Ehrenpreis, Solution of some problems of division. Ⅰ. Division by a polynomial of derivation, Amer. J. Math., 76 (1954), 883-903. [6] L. Ehrenpreis, Solution of some problems of division. Ⅰ. Division by a polynomial of derivation, Amer. J. Math., 77 (1955), 286-292. [7] M. Fall and T. Weth, Liouville theorems for a general class of nonlocal operators, Potential. Anal., 45 (2016), 187-200. [8] Q. Han and F. Lin, Elliptic Partial Differential Equations Courant Lecture Notes in Mathematics, American Mathematical Society, 1997. [9] T. Kuusi, G. Mingione and Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys., 337 (2015), 1317-1368. [10] N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York, 1972. [11] B. Malgrange, Existence et approximation des solutions des équations aux d'erivées partielles et des équations de convolution, Ann. Inst. Fourier, 6 (1955/56), 271-355. [12] M. Reed and B. Simon, Functional Analysis I,Methods of Modern Mathematical Physics, Academic Press, 1970. [13] W. Rudin, Functional Analysis 2nd edition, International Series in Pure and Applied Mathematics. McGraw-Hill, 1991. [14] R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. [15] E. M. Stein, Singular Integrals and Differentiability, Princeton Univ. Press, 1970.
 [1] Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827 [2] Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109 [3] Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233 [4] Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 [5] Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1 [6] Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003 [7] Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems & Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475 [8] Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495 [9] Jean Bourgain. On random Schrödinger operators on $\mathbb Z^2$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 1-15. doi: 10.3934/dcds.2002.8.1 [10] Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75 [11] Fengping Yao. Optimal regularity for parabolic Schrödinger operators. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1407-1414. doi: 10.3934/cpaa.2013.12.1407 [12] GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803 [13] Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071 [14] Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631 [15] Myeongju Chae, Soonsik Kwon. The stability of nonlinear Schrödinger equations with a potential in high Sobolev norms revisited. Communications on Pure & Applied Analysis, 2016, 15 (2) : 341-365. doi: 10.3934/cpaa.2016.15.341 [16] Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125 [17] Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525 [18] Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831 [19] Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831 [20] Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

2016 Impact Factor: 0.801

Article outline