September 2018, 17(5): 1993-2010. doi: 10.3934/cpaa.2018095

The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials

1. 

Department of Mathematics Education, Incheon National University, Incheon 22012, Republic of Korea

2. 

Department of Mathematics Education, Korea University, Seoul 02841, Republic of Korea

* Corresponding author: Yong-Cheol Kim

Received  August 2017 Revised  January 2018 Published  April 2018

In this paper, we prove the Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators $L_K+V$ with nonnegative potentials $V∈ L^q_{\rm{loc}}(\mathbb{R}^n)$ for $q>\frac{n}{2s}$ with $0 < s < 1$ and $n>2s$; that is to say, we obtain the existence of a fundamental solution $\mathfrak{e}_V$ for $L_K+V$ satisfying
$\begin{equation*}\bigl(L_K+V\bigr)\mathfrak{e}_V = \delta _0\,\,\text{ in $\mathbb{R}^n$ }\end{equation*}$
in the distribution sense, where $\delta _0$ denotes the Dirac delta mass at the origin. In addition, we obtain a decay of the fundamental solution $\mathfrak{e}_V$.
Citation: Woocheol Choi, Yong-Cheol Kim. The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1993-2010. doi: 10.3934/cpaa.2018095
References:
[1]

C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Comm. Pure and Appl. Anal., 15 (2016), 657-699.

[2]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. P.D.E., 32 (2007), 1245-1260.

[3]

W. Choi and Y.-C. Kim, Lp-mapping properties for nonlocal Schrödinger operators with certain potential, preprint, arXiv: math/0605406.

[4]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.

[5]

L. Ehrenpreis, Solution of some problems of division. Ⅰ. Division by a polynomial of derivation, Amer. J. Math., 76 (1954), 883-903.

[6]

L. Ehrenpreis, Solution of some problems of division. Ⅰ. Division by a polynomial of derivation, Amer. J. Math., 77 (1955), 286-292.

[7]

M. Fall and T. Weth, Liouville theorems for a general class of nonlocal operators, Potential. Anal., 45 (2016), 187-200.

[8]

Q. Han and F. Lin, Elliptic Partial Differential Equations Courant Lecture Notes in Mathematics, American Mathematical Society, 1997.

[9]

T. KuusiG. Mingione and Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys., 337 (2015), 1317-1368.

[10] N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York, 1972.
[11]

B. Malgrange, Existence et approximation des solutions des équations aux d'erivées partielles et des équations de convolution, Ann. Inst. Fourier, 6 (1955/56), 271-355.

[12] M. Reed and B. Simon, Functional Analysis I,Methods of Modern Mathematical Physics, Academic Press, 1970.
[13]

W. Rudin, Functional Analysis 2nd edition, International Series in Pure and Applied Mathematics. McGraw-Hill, 1991.

[14]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.

[15] E. M. Stein, Singular Integrals and Differentiability, Princeton Univ. Press, 1970.

show all references

References:
[1]

C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Comm. Pure and Appl. Anal., 15 (2016), 657-699.

[2]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. P.D.E., 32 (2007), 1245-1260.

[3]

W. Choi and Y.-C. Kim, Lp-mapping properties for nonlocal Schrödinger operators with certain potential, preprint, arXiv: math/0605406.

[4]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.

[5]

L. Ehrenpreis, Solution of some problems of division. Ⅰ. Division by a polynomial of derivation, Amer. J. Math., 76 (1954), 883-903.

[6]

L. Ehrenpreis, Solution of some problems of division. Ⅰ. Division by a polynomial of derivation, Amer. J. Math., 77 (1955), 286-292.

[7]

M. Fall and T. Weth, Liouville theorems for a general class of nonlocal operators, Potential. Anal., 45 (2016), 187-200.

[8]

Q. Han and F. Lin, Elliptic Partial Differential Equations Courant Lecture Notes in Mathematics, American Mathematical Society, 1997.

[9]

T. KuusiG. Mingione and Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys., 337 (2015), 1317-1368.

[10] N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York, 1972.
[11]

B. Malgrange, Existence et approximation des solutions des équations aux d'erivées partielles et des équations de convolution, Ann. Inst. Fourier, 6 (1955/56), 271-355.

[12] M. Reed and B. Simon, Functional Analysis I,Methods of Modern Mathematical Physics, Academic Press, 1970.
[13]

W. Rudin, Functional Analysis 2nd edition, International Series in Pure and Applied Mathematics. McGraw-Hill, 1991.

[14]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.

[15] E. M. Stein, Singular Integrals and Differentiability, Princeton Univ. Press, 1970.
[1]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[2]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[3]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[4]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[5]

Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253

[6]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[7]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[8]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems & Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

[9]

Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495

[10]

Jean Bourgain. On random Schrödinger operators on $\mathbb Z^2$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 1-15. doi: 10.3934/dcds.2002.8.1

[11]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[12]

Fengping Yao. Optimal regularity for parabolic Schrödinger operators. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1407-1414. doi: 10.3934/cpaa.2013.12.1407

[13]

Mouhamed Moustapha Fall. Regularity estimates for nonlocal Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1405-1456. doi: 10.3934/dcds.2019061

[14]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

[15]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[16]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[17]

Giovanna Cerami, Riccardo Molle. On some Schrödinger equations with non regular potential at infinity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 827-844. doi: 10.3934/dcds.2010.28.827

[18]

Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071

[19]

Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631

[20]

Myeongju Chae, Soonsik Kwon. The stability of nonlinear Schrödinger equations with a potential in high Sobolev norms revisited. Communications on Pure & Applied Analysis, 2016, 15 (2) : 341-365. doi: 10.3934/cpaa.2016.15.341

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (43)
  • HTML views (150)
  • Cited by (0)

Other articles
by authors

[Back to Top]