• Previous Article
    Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow
  • CPAA Home
  • This Issue
  • Next Article
    The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials
September 2018, 17(5): 1975-1992. doi: 10.3934/cpaa.2018094

A blowup alternative result for fractional nonautonomous evolution equation of Volterra type

Department of Mathematics, Northwest Normal University, Lanzhou 730070, China

* Corresponding author

Received  August 2017 Revised  November 2017 Published  April 2018

In this article, we consider a class of fractional non-autonomous integro-differential evolution equation of Volterra type in a Banach space $E$, where the operators in linear part (possibly unbounded) depend on time $t$. Combining the theory of fractional calculus, operator semigroups and measure of noncompactness with Sadovskii's fixed point theorem, we firstly proved the local existence of mild solutions for corresponding fractional non-autonomous integro-differential evolution equation. Based on the local existence result and a piecewise extended method, we obtained a blowup alternative result for fractional non-autonomous integro-differential evolution equation of Volterra type. Finally, as a sample of application, these results are applied to a time fractional non-autonomous partial integro-differential equation of Volterra type with homogeneous Dirichlet boundary condition. This paper is a continuation of Heard and Rakin [13, J. Differential Equations, 1988] and the results obtained essentially improve and extend some related conclusions in this area.

Citation: Pengyu Chen, Xuping Zhang, Yongxiang Li. A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1975-1992. doi: 10.3934/cpaa.2018094
References:
[1]

R. P. AgarwalM. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973-1033.

[2]

E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph. D thesis, Department of Mathematics, Eindhoven University of Technology, 2001.

[3]

J. and K. Goebel, Measures of Noncompactness in Banach Spaces, In Lecture Notes in Pure and Applied Mathematics, Volume 60, Marcel Dekker, New York, 1980.

[4]

P. M. Carvalho-Neto and G. Planas, Mild solutions to the time fractional Navier-Stokes equations in $\mathbb{R}^N$, J. Differential Equations, 259 (2015), 2948-2980.

[5]

P. Chen and Y. Li, Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions, Results Math., 63 (2013), 731-744.

[6]

P. Chen and Y. Li, Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65 (2014), 711-728.

[7]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.

[8]

M. M. El-Borai, The fundamental solutions for fractional evolution equations of parabolic type, J. Appl. Math. Stoch. Anal., 3 (2004), 197-211.

[9]

M. M. El-BoraiK. E. El-Nadi and E. G. El-Akabawy, On some fractional evolution equations, Comput. Math. Appl., 59 (2010), 1352-1355.

[10]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, NY, USA, 1969.

[11]

R. Gorenflo and F. Mainardi, Fractional calculus and stable probability distributions, Arch. Mech., 50 (1998), 377-388.

[12]

H. Gou and B. Li, Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 204-214.

[13]

M. L. Heard and S. M. Rankin, A semi-linear parabolic integro-differential equation, J. Differential Equations, 71 (1988), 201-233.

[14]

H. P. Heinz, On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351-1371.

[15]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-verlag, New York, 1981.

[16]

V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, New York, 1981.

[17]

Y. Li, Existence of solutions of initial value problems for abstract semilinear evolution equations, Acta Math. Sin., 48 (2005), 1089-1094 (in Chinese).

[18]

M. LiC. Chen and F. B. Li, On fractional powers of generators of fractional resolvent families, J. Funct. Anal., 259 (2010), 2702-2726.

[19]

K. LiJ. Peng and J. Jia, Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives, J. Funct. Anal., 263 (2012), 476-510.

[20]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, vol. 204, Elsevier Science B. V., Amsterdam, 2006.

[21]

Z. MeiJ. Peng and Y. Zhang, An operator theoretical approach to Riemann-Liouville fractional Cauchy problem, Math. Nachr., 288 (2015), 784-797.

[22]

Z. Ouyang, Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay, Comput. Math. Appl., 61 (2011), 860-870.

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-verlag, Berlin, 1983.

[24]

M. H. M. Rashid and A. Al-Omari, Local and global existence of mild solutions for impulsive fractional semi-linear integro-differential equation, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3493-3503.

[25]

H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Marcel Dekker, New York, USA, 1997.

[26]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, second ed., Springer-verlag, New York, 1997.

[27]

R. N. WangD. H. Chen and T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations, 252 (2012), 202-235.

[28]

R. N. WangT. J. Xiao and J. Liang, A note on the fractional Cauchy problems with nonlocal conditions, Appl. Math. Lette., 24 (2011), 1435-1442.

[29]

J. Wang and Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl., 12 (2011), 262-272.

[30]

J. WangY. Zhou and M. Fečkan, Abstract Cauchy problem for fractional differential equations, Nonlinear Dyn., 74 (2013), 685-700.

[31]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.

[32]

B. ZhuL. Liu and Y. Wu, Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Appl. Math. Lett., 61 (2016), 73-79.

show all references

References:
[1]

R. P. AgarwalM. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973-1033.

[2]

E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph. D thesis, Department of Mathematics, Eindhoven University of Technology, 2001.

[3]

J. and K. Goebel, Measures of Noncompactness in Banach Spaces, In Lecture Notes in Pure and Applied Mathematics, Volume 60, Marcel Dekker, New York, 1980.

[4]

P. M. Carvalho-Neto and G. Planas, Mild solutions to the time fractional Navier-Stokes equations in $\mathbb{R}^N$, J. Differential Equations, 259 (2015), 2948-2980.

[5]

P. Chen and Y. Li, Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions, Results Math., 63 (2013), 731-744.

[6]

P. Chen and Y. Li, Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65 (2014), 711-728.

[7]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.

[8]

M. M. El-Borai, The fundamental solutions for fractional evolution equations of parabolic type, J. Appl. Math. Stoch. Anal., 3 (2004), 197-211.

[9]

M. M. El-BoraiK. E. El-Nadi and E. G. El-Akabawy, On some fractional evolution equations, Comput. Math. Appl., 59 (2010), 1352-1355.

[10]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, NY, USA, 1969.

[11]

R. Gorenflo and F. Mainardi, Fractional calculus and stable probability distributions, Arch. Mech., 50 (1998), 377-388.

[12]

H. Gou and B. Li, Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 204-214.

[13]

M. L. Heard and S. M. Rankin, A semi-linear parabolic integro-differential equation, J. Differential Equations, 71 (1988), 201-233.

[14]

H. P. Heinz, On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351-1371.

[15]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-verlag, New York, 1981.

[16]

V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, New York, 1981.

[17]

Y. Li, Existence of solutions of initial value problems for abstract semilinear evolution equations, Acta Math. Sin., 48 (2005), 1089-1094 (in Chinese).

[18]

M. LiC. Chen and F. B. Li, On fractional powers of generators of fractional resolvent families, J. Funct. Anal., 259 (2010), 2702-2726.

[19]

K. LiJ. Peng and J. Jia, Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives, J. Funct. Anal., 263 (2012), 476-510.

[20]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, vol. 204, Elsevier Science B. V., Amsterdam, 2006.

[21]

Z. MeiJ. Peng and Y. Zhang, An operator theoretical approach to Riemann-Liouville fractional Cauchy problem, Math. Nachr., 288 (2015), 784-797.

[22]

Z. Ouyang, Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay, Comput. Math. Appl., 61 (2011), 860-870.

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-verlag, Berlin, 1983.

[24]

M. H. M. Rashid and A. Al-Omari, Local and global existence of mild solutions for impulsive fractional semi-linear integro-differential equation, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3493-3503.

[25]

H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Marcel Dekker, New York, USA, 1997.

[26]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, second ed., Springer-verlag, New York, 1997.

[27]

R. N. WangD. H. Chen and T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations, 252 (2012), 202-235.

[28]

R. N. WangT. J. Xiao and J. Liang, A note on the fractional Cauchy problems with nonlocal conditions, Appl. Math. Lette., 24 (2011), 1435-1442.

[29]

J. Wang and Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl., 12 (2011), 262-272.

[30]

J. WangY. Zhou and M. Fečkan, Abstract Cauchy problem for fractional differential equations, Nonlinear Dyn., 74 (2013), 685-700.

[31]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.

[32]

B. ZhuL. Liu and Y. Wu, Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Appl. Math. Lett., 61 (2016), 73-79.

[1]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[2]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[3]

Hermann Brunner. The numerical solution of weakly singular Volterra functional integro-differential equations with variable delays. Communications on Pure & Applied Analysis, 2006, 5 (2) : 261-276. doi: 10.3934/cpaa.2006.5.261

[4]

Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217

[5]

Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, Vitali Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 537-557. doi: 10.3934/dcdsb.2010.13.537

[6]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[7]

Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907

[8]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[9]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[10]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[11]

Eduardo Cuesta. Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Conference Publications, 2007, 2007 (Special) : 277-285. doi: 10.3934/proc.2007.2007.277

[12]

Mahesh G. Nerurkar. Spectral and stability questions concerning evolution of non-autonomous linear systems. Conference Publications, 2001, 2001 (Special) : 270-275. doi: 10.3934/proc.2001.2001.270

[13]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

[14]

Wen Tan, Chunyou Sun. Dynamics for a non-autonomous reaction diffusion model with the fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6035-6067. doi: 10.3934/dcds.2017260

[15]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[16]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[17]

Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677

[18]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[19]

Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026

[20]

Giuseppe Maria Coclite, Mario Michele Coclite. Positive solutions of an integro-differential equation in all space with singular nonlinear term. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 885-907. doi: 10.3934/dcds.2008.22.885

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (43)
  • HTML views (163)
  • Cited by (0)

Other articles
by authors

[Back to Top]