September 2018, 17(5): 1899-1920. doi: 10.3934/cpaa.2018090

Existence and asymptotic behaviors of traveling waves of a modified vector-disease model

1. 

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China

2. 

School of Mathematical and Statistical Sciences, University of Texas-Rio Grande Valley, Edinburg, Texas 78539, USA

* Corresponding author

Received  July 2017 Revised  November 2017 Published  April 2018

Fund Project: This work is supported by NSF of China (Grants No. 11471146,11771185 and 11671176)

In this paper, we are concerned with the existence and asymptotic behavior of traveling wave fronts in a modified vector-disease model. We establish the existence of traveling wave solutions for the modified vector-disease model without delay, then explore the existence of traveling fronts for the model with a special local delay convolution kernel by employing the geometric singular perturbation theory and the linear chain trick. Finally, we deal with the local stability of the steady states, the existence and asymptotic behaviors of traveling wave solutions for the model with the convolution kernel of a special non-local delay.

Citation: Zengji Du, Zhaosheng Feng. Existence and asymptotic behaviors of traveling waves of a modified vector-disease model. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1899-1920. doi: 10.3934/cpaa.2018090
References:
[1]

P. AshwinM. V. Bartuccelli and S. A. Gourley, Traveling fronts for the KPP equation with spatio-temporal delay, Z. Angew. Math. Phys., 53 (2002), 103-122.

[2]

P. W. Bates and F. X. Chen, Periodic traveling waves for a nonlocal integro-differential model, Electron. J. Differential Equations, 26 (1999), 1-19.

[3]

X. Chen and Z. J. Du, Existence of Positive Periodic Solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse, Qual. Theory Dyn. Syst., 17 (2018), 67-80.

[4]

C. Conley and R. Gardner, An application of the generalized Morse index to traveling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343.

[5]

P. De Maesschalck and F. Dumortier, Canard solutions at non-generic turning points, Trans. Amer. Math. Soc., 358 (2006), 2291-2334.

[6]

O. Diekmann, Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol., 6 (1978), 109-130.

[7]

Z. J. DuZ. Feng and X.N. Zhang, Traveling wave phenomena of n-dimensional diffusive predatorprey systems, Nonlinear Anal. Real World Appl., 41 (2018), 288-312.

[8]

F. Dumortier and R. Roussarie, Canard cycles with two breaking parameters, Discrete Contin. Dyn. Syst., 17 (2007), 787-806.

[9]

S. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.

[10]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.

[11]

N. Fenichel, Geometric singluar perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98.

[12]

Q. T. GanR. XuY. L. Li and R. X. Hu, Traveling waves in an infectious disease model with a fixed latent period and a spatio-temporal delay, Math. Comput. Modeling, 53 (2011), 814-823.

[13]

R. Gardner, Existence and stability of travelling wave solutions of competition models: A degree theoretic approach, J. Differential Equations, 44 (1982), 343-364.

[14]

R. Gardner and J. Smoller, The existence of periodic travelling waves for singularly perturbed predator-prey equations via the Conley index, J. Differential Equations, 47 (1983), 133-161.

[15]

S. A. Gourley and M. A. J. Chaplain, Travelling fronts in a food-limited population model with time delay, Proc. R. Soc. Edinb A, 132 (2002), 75-89.

[16]

S. A. Gourley and Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure, Proc. R. Soc. Lond. Ser. A, 459 (2003), 1563-1579.

[17]

S. A. Gourley and S. G. Ruan, Convergence and traveling wave fronts in functional differential equations with nonlocal terms: A competition model, SIAM. J. Math. Anal., 35 (2003), 806-822.

[18]

J. Huang and X. Zou, Travelling wave solutions in delayed reaction diffusion systems with partial monotonicity, Acta Math. Appl. Sin. Engl. Ser., 22 (2006), 243-256.

[19]

C. K. R. T. Jones, Geometric Singular Perturbation Theory, In Dynamical systems (ed. R. Johnson). Lecture Notes in Mathematics, vol. 1609, Springer, 1995.

[20]

Y. Kuang and C. Castillo-Chavez, A simple epidemiological model for populations in the wild with allee effects and disease-modified fitness, Discrete Contin. Dyn. Syst. B, 19 (2014), 89-130.

[21]

C. Z. Li and H. P. Zhu, Canard cycles for predatorCprey systems with Holling types of functional response, J. Differential Equations, 254 (2013), 879-910.

[22]

W. T. LiN. W. Liu and Z. C. Wang, Entire solutions in reaction-advection-diffusion equations in cylinders, J. Math. Pures Appl., 90 (2008), 492-504.

[23]

W. T. LiZ. C. Wang and J. H. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245 (2008), 102-129.

[24]

G. Y. Lv and M. X. Wang, Existence, uniqueness and asymptotic behavior of traveling wave fronts for a vector disease model, Nonlinear Anal., 11 (2010), 2035-2043.

[25]

G. Y. Lv and M. X. Wang, Traveling wave front in diffusive and competitive Lotka-Volterra system with delays, Nonlinear Anal. (RWA), 11 (2010), 1323-1329.

[26]

S. Ma, Asymptotic stability of traveling waves in a discrete convolution model for phase transitions, J. Math. Anal. Appl., 308 (2005), 240-256.

[27]

M. B. A. Mansour, Traveling wave solutions for a singularly perturbed Burgers-KdV equation, Pramana, Indin Acad. Sci., 73 (2009), 799-806.

[28]

M. A. Pozio, Some conditions for global asymptotic stability of equilibria of integrodifferential equations, J. Math. Anal. Appl., 95 (1983), 501-527.

[29]

S. G. Ruan and D. M. Xiao, Stability of steady states and existence of traveling wave in a vector disease model, Proc. Roy. Soc. Edinburgh, 134A (2004), 991-1011.

[30]

K. W. Schaaf, Asymptotic behavior and travelling wave solutions for parabolic functional differential equations, Trans. Amer. Math. Soc., 302 (1987), 587-615.

[31]

Z. C. WangW. T. Li and S. G. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Differential Equations, 20 (2008), 573-607.

[32]

J. Wu and X. Zou, Travelling wave fronts of reaction diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651-687.

[33]

H. XiangY. L. Tang and H. F. Huo, A viral model with intracellular delay and humoral immunity, Bull. Malays. Math. Sci. Soc., 40 (2017), 1011-1023.

[34]

J. M. Zhang, Existence of traveling waves in a modelified vector-disease model, Appl. Math. Model., 33 (2009), 626-632.

[35]

X. Q. Zhao and W. Wang, Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. B, 4 (2004), 1117-1128.

[36]

X. Q. Zhao and D. M. Xiao, The asymptotic speed of spread and traveling waves for a vector disease model, J. Dynam. Differential Equations, 18 (2006), 1001-1019.

show all references

References:
[1]

P. AshwinM. V. Bartuccelli and S. A. Gourley, Traveling fronts for the KPP equation with spatio-temporal delay, Z. Angew. Math. Phys., 53 (2002), 103-122.

[2]

P. W. Bates and F. X. Chen, Periodic traveling waves for a nonlocal integro-differential model, Electron. J. Differential Equations, 26 (1999), 1-19.

[3]

X. Chen and Z. J. Du, Existence of Positive Periodic Solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse, Qual. Theory Dyn. Syst., 17 (2018), 67-80.

[4]

C. Conley and R. Gardner, An application of the generalized Morse index to traveling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343.

[5]

P. De Maesschalck and F. Dumortier, Canard solutions at non-generic turning points, Trans. Amer. Math. Soc., 358 (2006), 2291-2334.

[6]

O. Diekmann, Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol., 6 (1978), 109-130.

[7]

Z. J. DuZ. Feng and X.N. Zhang, Traveling wave phenomena of n-dimensional diffusive predatorprey systems, Nonlinear Anal. Real World Appl., 41 (2018), 288-312.

[8]

F. Dumortier and R. Roussarie, Canard cycles with two breaking parameters, Discrete Contin. Dyn. Syst., 17 (2007), 787-806.

[9]

S. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.

[10]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.

[11]

N. Fenichel, Geometric singluar perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98.

[12]

Q. T. GanR. XuY. L. Li and R. X. Hu, Traveling waves in an infectious disease model with a fixed latent period and a spatio-temporal delay, Math. Comput. Modeling, 53 (2011), 814-823.

[13]

R. Gardner, Existence and stability of travelling wave solutions of competition models: A degree theoretic approach, J. Differential Equations, 44 (1982), 343-364.

[14]

R. Gardner and J. Smoller, The existence of periodic travelling waves for singularly perturbed predator-prey equations via the Conley index, J. Differential Equations, 47 (1983), 133-161.

[15]

S. A. Gourley and M. A. J. Chaplain, Travelling fronts in a food-limited population model with time delay, Proc. R. Soc. Edinb A, 132 (2002), 75-89.

[16]

S. A. Gourley and Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure, Proc. R. Soc. Lond. Ser. A, 459 (2003), 1563-1579.

[17]

S. A. Gourley and S. G. Ruan, Convergence and traveling wave fronts in functional differential equations with nonlocal terms: A competition model, SIAM. J. Math. Anal., 35 (2003), 806-822.

[18]

J. Huang and X. Zou, Travelling wave solutions in delayed reaction diffusion systems with partial monotonicity, Acta Math. Appl. Sin. Engl. Ser., 22 (2006), 243-256.

[19]

C. K. R. T. Jones, Geometric Singular Perturbation Theory, In Dynamical systems (ed. R. Johnson). Lecture Notes in Mathematics, vol. 1609, Springer, 1995.

[20]

Y. Kuang and C. Castillo-Chavez, A simple epidemiological model for populations in the wild with allee effects and disease-modified fitness, Discrete Contin. Dyn. Syst. B, 19 (2014), 89-130.

[21]

C. Z. Li and H. P. Zhu, Canard cycles for predatorCprey systems with Holling types of functional response, J. Differential Equations, 254 (2013), 879-910.

[22]

W. T. LiN. W. Liu and Z. C. Wang, Entire solutions in reaction-advection-diffusion equations in cylinders, J. Math. Pures Appl., 90 (2008), 492-504.

[23]

W. T. LiZ. C. Wang and J. H. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245 (2008), 102-129.

[24]

G. Y. Lv and M. X. Wang, Existence, uniqueness and asymptotic behavior of traveling wave fronts for a vector disease model, Nonlinear Anal., 11 (2010), 2035-2043.

[25]

G. Y. Lv and M. X. Wang, Traveling wave front in diffusive and competitive Lotka-Volterra system with delays, Nonlinear Anal. (RWA), 11 (2010), 1323-1329.

[26]

S. Ma, Asymptotic stability of traveling waves in a discrete convolution model for phase transitions, J. Math. Anal. Appl., 308 (2005), 240-256.

[27]

M. B. A. Mansour, Traveling wave solutions for a singularly perturbed Burgers-KdV equation, Pramana, Indin Acad. Sci., 73 (2009), 799-806.

[28]

M. A. Pozio, Some conditions for global asymptotic stability of equilibria of integrodifferential equations, J. Math. Anal. Appl., 95 (1983), 501-527.

[29]

S. G. Ruan and D. M. Xiao, Stability of steady states and existence of traveling wave in a vector disease model, Proc. Roy. Soc. Edinburgh, 134A (2004), 991-1011.

[30]

K. W. Schaaf, Asymptotic behavior and travelling wave solutions for parabolic functional differential equations, Trans. Amer. Math. Soc., 302 (1987), 587-615.

[31]

Z. C. WangW. T. Li and S. G. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Differential Equations, 20 (2008), 573-607.

[32]

J. Wu and X. Zou, Travelling wave fronts of reaction diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651-687.

[33]

H. XiangY. L. Tang and H. F. Huo, A viral model with intracellular delay and humoral immunity, Bull. Malays. Math. Sci. Soc., 40 (2017), 1011-1023.

[34]

J. M. Zhang, Existence of traveling waves in a modelified vector-disease model, Appl. Math. Model., 33 (2009), 626-632.

[35]

X. Q. Zhao and W. Wang, Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. B, 4 (2004), 1117-1128.

[36]

X. Q. Zhao and D. M. Xiao, The asymptotic speed of spread and traveling waves for a vector disease model, J. Dynam. Differential Equations, 18 (2006), 1001-1019.

[1]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[2]

John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501

[3]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[4]

Armengol Gasull, Hector Giacomini, Joan Torregrosa. Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3567-3582. doi: 10.3934/dcds.2013.33.3567

[5]

Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501

[6]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[7]

João Fialho, Feliz Minhós. The role of lower and upper solutions in the generalization of Lidstone problems. Conference Publications, 2013, 2013 (special) : 217-226. doi: 10.3934/proc.2013.2013.217

[8]

Massimo Tarallo, Zhe Zhou. Limit periodic upper and lower solutions in a generic sense. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 293-309. doi: 10.3934/dcds.2018014

[9]

Luisa Malaguti, Cristina Marcelli. Existence of bounded trajectories via upper and lower solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 575-590. doi: 10.3934/dcds.2000.6.575

[10]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[11]

Yongqin Liu, Shuichi Kawashima. Asymptotic behavior of solutions to a model system of a radiating gas. Communications on Pure & Applied Analysis, 2011, 10 (1) : 209-223. doi: 10.3934/cpaa.2011.10.209

[12]

Fang-Di Dong, Wan-Tong Li, Jia-Bing Wang. Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6291-6318. doi: 10.3934/dcds.2017272

[13]

Ryo Ikehata, Marina Soga. Asymptotic profiles for a strongly damped plate equation with lower order perturbation. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1759-1780. doi: 10.3934/cpaa.2015.14.1759

[14]

Wan-Tong Li, Wen-Bing Xu, Li Zhang. Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2483-2512. doi: 10.3934/dcds.2017107

[15]

Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 89-110. doi: 10.3934/dcds.2013.33.89

[16]

Xiang-Sheng Wang, Haiyan Wang, Jianhong Wu. Traveling waves of diffusive predator-prey systems: Disease outbreak propagation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3303-3324. doi: 10.3934/dcds.2012.32.3303

[17]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

[18]

Ana Maria Bertone, J.V. Goncalves. Discontinuous elliptic problems in $R^N$: Lower and upper solutions and variational principles. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 315-328. doi: 10.3934/dcds.2000.6.315

[19]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[20]

Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (47)
  • HTML views (151)
  • Cited by (0)

Other articles
by authors

[Back to Top]