• Previous Article
    Positive radial solutions of a nonlinear boundary value problem
  • CPAA Home
  • This Issue
  • Next Article
    Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy
September 2018, 17(5): 1785-1804. doi: 10.3934/cpaa.2018085

On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities

Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China

* Corresponding author: Binhua Feng

Received  May 2017 Revised  December 2017 Published  April 2018

Fund Project: This work is supported by NSFC Grants (No. 11601435, No. 11475073), Gansu Provincial Natural Science Foundation (1606RJZA010) and NWNU-LKQN-14-6

This paper is devoted to the analysis of blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities
$i\partial_t u-(-Δ)^su+λ_1|u|^{2p_1}u+λ_2|u|^{2p_2}u = 0, $
where
$ 0<p_1<p_2<\frac{2s}{N-2s}$
. Firstly, we obtain some sufficient conditions about existence of blow-up solutions, and then derive some sharp thresholds of blow-up and global existence by constructing some new estimates. Moreover, we find the sharp threshold mass of blow-up and global existence in the case
$ 0<p_1<\frac{2s}{N}$
and
$p_2 = \frac{2s}{N}$
. Finally, we investigate the dynamical properties of blow-up solutions, including
$L^2$
-concentration, blow-up rate and limiting profile.
Citation: Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085
References:
[1]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blowup for fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603. doi: 10.1016/j.jde.2003.12.002.

[2]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[3]

Y. ChoH. HajaiejG. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödinger equations with Hartree type nonlimearity, Funkcial. Ekvac., 56 (2013), 193-224. doi: 10.1016/j.jde.2003.12.002.

[4]

Y. ChoH. HajaiejG. Hwang and T. Ozawa, On the orbital stability of fractional Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 1267-1282. doi: 10.1016/j.jde.2003.12.002.

[5]

Y. ChoG. HwangS. Kwon and S. Lee, Profile decompositions and Blow-up phenomena of mass critical fractional Schrödinger equations, Nonlinear Anal., 86 (2013), 12-29. doi: 10.1016/j.jde.2003.12.002.

[6]

Y. ChoG. HwangS. Kwon and S. Lee, On finite time blow-up for the mass-critical Hartree equations, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 467-479. doi: 10.1016/j.jde.2003.12.002.

[7]

Y. ChoG. HwangS. Kwon and S. Lee, Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete Contin. Dyn. Syst., 35 (2015), 2863-2880. doi: 10.1016/j.jde.2003.12.002.

[8]

B. Feng, Sharp threshold of global existence and instability of standing wave for the Schrödinger-Hartree equation with a harmonic potential, Nonlinear Anal. Real World Appl., 31 (2016), 132-145. doi: 10.1016/j.jde.2003.12.002.

[9]

B. Feng, On the blow-up solutions for the nonlinear Schrödinger equation with combined power-type nonlinearities, Journal of Evolution Equations, 18 (2018), 203-220. doi: 10.1016/j.jde.2003.12.002.

[10]

B. Feng and Y. Cai, Concentration for blow-up solutions of the Davey-Stewartson system in $\mathbb{R}^3$, Nonlinear Anal. Real World Appl., 26 (2015), 330-342. doi: 10.1016/j.jde.2003.12.002.

[11]

B. Feng and X. Yuan, On the Cauchy problem for the Schrödinger-Hartree equation, Evol. Equ. Control Theory, 4 (2015), 431-445. doi: 10.1016/j.jde.2003.12.002.

[12]

B. Feng and H. Zhang, Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl., 460 (2018), 352-364. doi: 10.1016/j.jde.2003.12.002.

[13]

B. Feng and H. Zhang, Stability of standing waves for the fractional Schrödinger-Choquard equation, Comput. Math. Appl., 75 (2018), 2499-2507. doi: 10.1016/j.jde.2003.12.002.

[14]

B. FengD. Zhao and C. Sun, On the Cauchy problem for the nonlinear Schrödinger equations with time-dependent linear loss/gain, J. Math. Anal. Appl., 416 (2014), 901-923. doi: 10.1016/j.jde.2003.12.002.

[15]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal., 32 (1979), 1-32. doi: 10.1016/j.jde.2003.12.002.

[16]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797. doi: 10.1016/j.jde.2003.12.002.

[17]

Q. Guo and S. Zhu, Sharp threshold of blow-up and scattering for the fractional Hartree equation, Journal of Differential Equations, 264 (2018), 2802-2832. doi: 10.1016/j.jde.2003.12.002.

[18]

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited, International Mathematics Research Notices, 46 (2005), 2815-2828. doi: 10.1016/j.jde.2003.12.002.

[19]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Commun. Pure Appl. Anal., 14 (2015), 2265-2282. doi: 10.1016/j.jde.2003.12.002.

[20]

C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140364. doi: 10.1016/j.jde.2003.12.002.

[21]

E. A. KuznetsovJ. J. RasmussenK. Rypdal and S. K. Turitsyn, Sharper criteria for the wave collapse, Physica D, 87 (1995), 273-284. doi: 10.1016/j.jde.2003.12.002.

[22]

N. Laskin, Fractional Quantum Mechanics and Lévy Path Integrals, Physics Letter A, 268 (2000), 298-304. doi: 10.1016/j.jde.2003.12.002.

[23]

N. Laskin, Fractional Schrödinger equations, Physics Review E, 66 (2002), 056108. doi: 10.1016/j.jde.2003.12.002.

[24]

J. Liu and A. Qian, Ground state solution for a Schrödinger-Poisson equation with critical growth, Nonlinear Anal. Real World Appl., 40 (2018), 428-443. doi: 10.1016/j.jde.2003.12.002.

[25]

A. MaoL. YangA. Qian and S. Luan, Shixia Existence and concentration of solutions of Schrödinger-Poisson system, Appl. Math. Lett., 68 (2017), 8-12. doi: 10.1016/j.jde.2003.12.002.

[26]

F. Merle and P. Raphaël, On universality of blow-up profile for $L^2$ critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-572. doi: 10.1016/j.jde.2003.12.002.

[27]

F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. Math., 16 (2005), 157-222. doi: 10.1016/j.jde.2003.12.002.

[28]

F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^2$ critical nonlinear Schrödinger equation, J. Amer. Soc., 19 (2006), 37-90. doi: 10.1016/j.jde.2003.12.002.

[29]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330. doi: 10.1016/j.jde.2003.12.002.

[30]

C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-0873-0.

[31]

T. TaoM. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343. doi: 10.1016/j.jde.2003.12.002.

[32]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576. doi: 10.1016/j.jde.2003.12.002.

[33]

M. I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations, 11 (1986), 545-565. doi: 10.1016/j.jde.2003.12.002.

[34]

J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Anal., 48 (2002), 191-207. doi: 10.1016/j.jde.2003.12.002.

[35]

J. Zhang and S. Zhu, Stability of standing waves for the nonlinear fractional Schrödinger equation, J. Dynam. Differential Equations, 29 (2017), 1017-1030 doi: 10.1016/j.jde.2003.12.002.

[36]

J. Zhang and S. Zhu, Sharp blow-up criteria for the Davey-Stewartson system in $\mathbb{R}^3$, Dynamics of PDE, 8 (2011), 239-260. doi: 10.1016/j.jde.2003.12.002.

[37]

S. Zhu, On the blow-up solutions for the nonlinear fractional Schrödinger equation, J. Differential Equations, 261 (2016), 1506-1531. doi: 10.1016/j.jde.2003.12.002.

[38]

S. Zhu, On the Davey-Stewartson system with competing nonlinearities, J. Math. Phys., 57 (2016), 031501. doi: 10.1016/j.jde.2003.12.002.

[39]

S. Zhu, Existence of stable standing waves for the fractional Schrödinger equations with combined nonlinearities, J. Evol. Equ., 17 (2017), 1003-1021 doi: 10.1016/j.jde.2003.12.002.

show all references

References:
[1]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blowup for fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603. doi: 10.1016/j.jde.2003.12.002.

[2]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[3]

Y. ChoH. HajaiejG. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödinger equations with Hartree type nonlimearity, Funkcial. Ekvac., 56 (2013), 193-224. doi: 10.1016/j.jde.2003.12.002.

[4]

Y. ChoH. HajaiejG. Hwang and T. Ozawa, On the orbital stability of fractional Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 1267-1282. doi: 10.1016/j.jde.2003.12.002.

[5]

Y. ChoG. HwangS. Kwon and S. Lee, Profile decompositions and Blow-up phenomena of mass critical fractional Schrödinger equations, Nonlinear Anal., 86 (2013), 12-29. doi: 10.1016/j.jde.2003.12.002.

[6]

Y. ChoG. HwangS. Kwon and S. Lee, On finite time blow-up for the mass-critical Hartree equations, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 467-479. doi: 10.1016/j.jde.2003.12.002.

[7]

Y. ChoG. HwangS. Kwon and S. Lee, Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete Contin. Dyn. Syst., 35 (2015), 2863-2880. doi: 10.1016/j.jde.2003.12.002.

[8]

B. Feng, Sharp threshold of global existence and instability of standing wave for the Schrödinger-Hartree equation with a harmonic potential, Nonlinear Anal. Real World Appl., 31 (2016), 132-145. doi: 10.1016/j.jde.2003.12.002.

[9]

B. Feng, On the blow-up solutions for the nonlinear Schrödinger equation with combined power-type nonlinearities, Journal of Evolution Equations, 18 (2018), 203-220. doi: 10.1016/j.jde.2003.12.002.

[10]

B. Feng and Y. Cai, Concentration for blow-up solutions of the Davey-Stewartson system in $\mathbb{R}^3$, Nonlinear Anal. Real World Appl., 26 (2015), 330-342. doi: 10.1016/j.jde.2003.12.002.

[11]

B. Feng and X. Yuan, On the Cauchy problem for the Schrödinger-Hartree equation, Evol. Equ. Control Theory, 4 (2015), 431-445. doi: 10.1016/j.jde.2003.12.002.

[12]

B. Feng and H. Zhang, Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl., 460 (2018), 352-364. doi: 10.1016/j.jde.2003.12.002.

[13]

B. Feng and H. Zhang, Stability of standing waves for the fractional Schrödinger-Choquard equation, Comput. Math. Appl., 75 (2018), 2499-2507. doi: 10.1016/j.jde.2003.12.002.

[14]

B. FengD. Zhao and C. Sun, On the Cauchy problem for the nonlinear Schrödinger equations with time-dependent linear loss/gain, J. Math. Anal. Appl., 416 (2014), 901-923. doi: 10.1016/j.jde.2003.12.002.

[15]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal., 32 (1979), 1-32. doi: 10.1016/j.jde.2003.12.002.

[16]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797. doi: 10.1016/j.jde.2003.12.002.

[17]

Q. Guo and S. Zhu, Sharp threshold of blow-up and scattering for the fractional Hartree equation, Journal of Differential Equations, 264 (2018), 2802-2832. doi: 10.1016/j.jde.2003.12.002.

[18]

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited, International Mathematics Research Notices, 46 (2005), 2815-2828. doi: 10.1016/j.jde.2003.12.002.

[19]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Commun. Pure Appl. Anal., 14 (2015), 2265-2282. doi: 10.1016/j.jde.2003.12.002.

[20]

C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140364. doi: 10.1016/j.jde.2003.12.002.

[21]

E. A. KuznetsovJ. J. RasmussenK. Rypdal and S. K. Turitsyn, Sharper criteria for the wave collapse, Physica D, 87 (1995), 273-284. doi: 10.1016/j.jde.2003.12.002.

[22]

N. Laskin, Fractional Quantum Mechanics and Lévy Path Integrals, Physics Letter A, 268 (2000), 298-304. doi: 10.1016/j.jde.2003.12.002.

[23]

N. Laskin, Fractional Schrödinger equations, Physics Review E, 66 (2002), 056108. doi: 10.1016/j.jde.2003.12.002.

[24]

J. Liu and A. Qian, Ground state solution for a Schrödinger-Poisson equation with critical growth, Nonlinear Anal. Real World Appl., 40 (2018), 428-443. doi: 10.1016/j.jde.2003.12.002.

[25]

A. MaoL. YangA. Qian and S. Luan, Shixia Existence and concentration of solutions of Schrödinger-Poisson system, Appl. Math. Lett., 68 (2017), 8-12. doi: 10.1016/j.jde.2003.12.002.

[26]

F. Merle and P. Raphaël, On universality of blow-up profile for $L^2$ critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-572. doi: 10.1016/j.jde.2003.12.002.

[27]

F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. Math., 16 (2005), 157-222. doi: 10.1016/j.jde.2003.12.002.

[28]

F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^2$ critical nonlinear Schrödinger equation, J. Amer. Soc., 19 (2006), 37-90. doi: 10.1016/j.jde.2003.12.002.

[29]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330. doi: 10.1016/j.jde.2003.12.002.

[30]

C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-0873-0.

[31]

T. TaoM. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343. doi: 10.1016/j.jde.2003.12.002.

[32]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576. doi: 10.1016/j.jde.2003.12.002.

[33]

M. I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations, 11 (1986), 545-565. doi: 10.1016/j.jde.2003.12.002.

[34]

J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Anal., 48 (2002), 191-207. doi: 10.1016/j.jde.2003.12.002.

[35]

J. Zhang and S. Zhu, Stability of standing waves for the nonlinear fractional Schrödinger equation, J. Dynam. Differential Equations, 29 (2017), 1017-1030 doi: 10.1016/j.jde.2003.12.002.

[36]

J. Zhang and S. Zhu, Sharp blow-up criteria for the Davey-Stewartson system in $\mathbb{R}^3$, Dynamics of PDE, 8 (2011), 239-260. doi: 10.1016/j.jde.2003.12.002.

[37]

S. Zhu, On the blow-up solutions for the nonlinear fractional Schrödinger equation, J. Differential Equations, 261 (2016), 1506-1531. doi: 10.1016/j.jde.2003.12.002.

[38]

S. Zhu, On the Davey-Stewartson system with competing nonlinearities, J. Math. Phys., 57 (2016), 031501. doi: 10.1016/j.jde.2003.12.002.

[39]

S. Zhu, Existence of stable standing waves for the fractional Schrödinger equations with combined nonlinearities, J. Evol. Equ., 17 (2017), 1003-1021 doi: 10.1016/j.jde.2003.12.002.

[1]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[2]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[3]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[4]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[5]

J. Cuevas, J. C. Eilbeck, N. I. Karachalios. Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 445-475. doi: 10.3934/dcds.2008.21.445

[6]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[7]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[8]

Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435

[9]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[10]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[11]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[12]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

[13]

Laurent Di Menza, Olivier Goubet. Stabilizing blow up solutions to nonlinear schrÖdinger equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1059-1082. doi: 10.3934/cpaa.2017051

[14]

István Győri, Yukihiko Nakata, Gergely Röst. Unbounded and blow-up solutions for a delay logistic equation with positive feedback. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2845-2854. doi: 10.3934/cpaa.2018134

[15]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

[16]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[17]

Nicola Abatangelo. Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5555-5607. doi: 10.3934/dcds.2015.35.5555

[18]

Yūki Naito, Takasi Senba. Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3691-3713. doi: 10.3934/dcds.2012.32.3691

[19]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[20]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (82)
  • HTML views (155)
  • Cited by (0)

Other articles
by authors

[Back to Top]