September 2018, 17(5): 1723-1747. doi: 10.3934/cpaa.2018082

Homoclinic solutions of discrete $ \phi $-Laplacian equations with mixed nonlinearities

School of Mathematics and Information Science, Guangzhou University, Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China

* Corresponding author

Received  March 2017 Revised  November 2017 Published  April 2018

By using critical point theory, we obtain some new sufficient conditions on the existence of homoclinic solutions of a class of nonlinear discrete $ \phi $-Laplacian equations with mixed nonlinearities for the potentials being periodic or being unbounded, respectively. And we prove it is also necessary in some special cases. In addition, multiplicity results of homoclinic solutions for nonlinear discrete $ \phi $-Laplacian equations with unbounded potentials have also been considered. In our paper, the nonlinearities can be mixed super $ p $-linear with asymptotically $ p $-linear at $ ∞ $ for $ p≥ 1 $. To the best of our knowledge, there is no such result for the existence of homoclinic solutions with discrete $ \phi $-Laplacian before. Finally, an extension has also been considered.

Citation: Genghong Lin, Zhan Zhou. Homoclinic solutions of discrete $ \phi $-Laplacian equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1723-1747. doi: 10.3934/cpaa.2018082
References:
[1]

G. Arioli and F. Gazzola, Periodic motions of an infinite lattice of particles with nearest neighbor interaction, Nonlinear Anal., 26 (1996), 1103-1114.

[2]

S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization, Physica D, 103 (1997), 201-250.

[3]

S. Aubry, Discrete breathers: localization and transfer of energy in discrete Hamiltonian nonlinear systems, Physica D, 216 (2006), 1-30.

[4]

G. Chen and S. Ma, Discrete nonlinear Schrödinger equations with superlinear nonlinearities, Appl. Math. Comput., 218 (2012), 5496-5507.

[5]

G. Chen and S. Ma, Homoclinic solutions of discrete nonlinear Schrödinger equations with asymptotically or super linear terms, Appl. Math. Comput., 232 (2014), 787-798.

[6]

W. Chen and M. Yang, Standing waves for periodic discrete nonlinear Schrödinger equations with asymptotically linear terms, Acta Math. Appl. Sin. Engl. Ser., 28 (2012), 351-360.

[7]

J. CuevasP. G. KevrekidisD. J. Frantzeskakis and B. A. Malomed, Discrete solitons in nonlinear Schrödinger lattices with a power-law nonlinearity, Physica D, 238 (2009), 67-76.

[8]

S. Flach and A. V. Gorbach, Discrete breathers-advance in theory and applications, Phys. Rep., 467 (2008), 1-116.

[9]

J. W. FleischerM. SegevN. K. Efremidis and D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 422 (2003), 147-150.

[10]

A. V. Gorbach and M. Johansson, Gap and out-gap breathers in a binary modulated discrete nonlinear Schrödinger model, Eur. Phys. J. D, 29 (2004), 77-93.

[11]

G. James, Centre manifold reduction for quasilinear discrete systems, J. Nonlinear Sci., 13 (2003), 27-63.

[12]

A. KhareK. RasmussenM. Samuelsen and A. Saxena, Exact solutions of the saturable discrete nonlinear Schrödinger equation, J. Phys. A, 38 (2005), 807-814.

[13]

G. Kopidakis, S. Aubry and G. P. Tsironis, Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 87 (2001), Art. ID 165501.

[14]

W. KrolikowskiB. L. Davies and C. Denz, Photorefractive solitons, IEEE J. Quant. Electron., 39 (2003), 3-12.

[15]

J. Kuang and Z. Guo, Homoclinic solutions of a class of periodic difference equations with asymptotically linear nonlinearities, Nonlinear Anal., 89 (2013), 208-218.

[16]

G. Lin and Z. Zhou, Periodic and subharmonic solutions for a $ 2n $th-order difference equation containing both advance and retardation with $ \phi $-Laplacian, Adv. Difference Equ., 2014(2014), Art. ID 74.

[17]

G. Lin and Z. Zhou, Homoclinic solutions in periodic difference equations with mixed nonlinearities, Math. Method Appl. Sci., 39 (2016), 245-260.

[18]

G. Lin and Z. Zhou, Homoclinic solutions in non-periodic discrete $ \phi $-Laplacian equations with mixed nonlinearities, Appl. Math. lett., 64 (2017), 15-20.

[19]

S. Liu and S. Li, Infinitely many solutions for a superlinear elliptic equation, Acta Math. Sinica Chin. Ser., 46 (2003), 625-630.

[20]

R. Livi, R. Franzosi and G. L. Oppo, Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation, Phys. Rev. Lett., 97 (2006), Art. ID 060401.

[21]

S. Ma and Z. Wang, Multibump solutions for discrete periodic nonlinear Schrödinger equations, Z. Angew. Math. Phys., 64 (2013), 1413-1442.

[22]

A. Mai and Z. Zhou, Ground state solutions for the periodic discrete nonlinear Schrödinger equations with superlinear nonlinearities, Abstr. Appl. Anal., 2013 (2013), Art. ID 317139.

[23]

J. Mawhin, Periodic solutions of second order nonlinear difference systems with $ \phi $-Laplacian: a variational approach, Nonlinear Anal., 75 (2012), 4672-4687.

[24]

J. Mawhin, Periodic solutions of second order Lagrangian difference systems with bounded or singular $ \phi $-Laplacian and periodic potential, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1065-1076.

[25]

A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations with saturable nonlinearities, J. Math. Anal. Appl., 371 (2010), 254-265.

[26]

A. Pankov and V. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity, Proc. R. Soc. A, 464 (2008), 3219-3236.

[27]

H. Shi, Gap solitons in periodic discrete Schrödinger equations with nonlinearity, Acta Appl. Math., 109 (2010), 1065-1075.

[28]

H. Shi and H. Zhang, Existence of gap solitons in a periodic discrete nonlinear Schrödinger equations, J. Math. Anal. Appl., 361 (2010), 411-419.

[29]

C. A. Stuart, Locating Cerami sequences in a mountain pass geometry, Commun. Appl. Anal., 2-4 (2011), 569-588.

[30]

A. A. Sukhorukov and Y. S. Kivshar, Generation and stability of discrete gap solitons, Opt. Lett., 28 (2003), 2345-2347.

[31]

X. Tang, Non-Nehari manifold method for periodic discrete superlinear Schrödinger equation, Acta Math. Sin. Engl. Ser., 32 (2016), 463-473.

[32]

X. Tang and J. Chen, Infinitely many homoclinic orbits for a class of discrete Hamiltonian systems, Adv. Difference Equ., 2013 (2013), Art. ID 242.

[33]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.

[34]

M. YangW. Chen and Y. Ding, Solutions for discrete periodic Schrödinger equations with spectrum $ 0 $, Acta. Appl. Math., 110 (2010), 1475-1488.

[35]

G. Zhang and A. Pankov, Standing waves of the discrete nonlinear Schrödinger equations with growing potentials, Commun. Math. Anal., 5 (2008), 38-49.

[36]

Z. Zhou and D. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 58 (2015), 781-790.

[37]

Z. Zhou and J. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differential Equations, 249 (2010), 1199-1212.

[38]

Z. Zhou and J. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta Math. Appl. Sin. Engl. Ser., 29 (2013), 1809-1822.

[39]

Z. ZhouJ. Yu and Y. Chen, Homoclinic solutions in periodic diffrence equations with saturable nonlinearity, Sci. China Math., 54 (2011), 83-93.

[40]

W. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343-358.

show all references

References:
[1]

G. Arioli and F. Gazzola, Periodic motions of an infinite lattice of particles with nearest neighbor interaction, Nonlinear Anal., 26 (1996), 1103-1114.

[2]

S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization, Physica D, 103 (1997), 201-250.

[3]

S. Aubry, Discrete breathers: localization and transfer of energy in discrete Hamiltonian nonlinear systems, Physica D, 216 (2006), 1-30.

[4]

G. Chen and S. Ma, Discrete nonlinear Schrödinger equations with superlinear nonlinearities, Appl. Math. Comput., 218 (2012), 5496-5507.

[5]

G. Chen and S. Ma, Homoclinic solutions of discrete nonlinear Schrödinger equations with asymptotically or super linear terms, Appl. Math. Comput., 232 (2014), 787-798.

[6]

W. Chen and M. Yang, Standing waves for periodic discrete nonlinear Schrödinger equations with asymptotically linear terms, Acta Math. Appl. Sin. Engl. Ser., 28 (2012), 351-360.

[7]

J. CuevasP. G. KevrekidisD. J. Frantzeskakis and B. A. Malomed, Discrete solitons in nonlinear Schrödinger lattices with a power-law nonlinearity, Physica D, 238 (2009), 67-76.

[8]

S. Flach and A. V. Gorbach, Discrete breathers-advance in theory and applications, Phys. Rep., 467 (2008), 1-116.

[9]

J. W. FleischerM. SegevN. K. Efremidis and D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 422 (2003), 147-150.

[10]

A. V. Gorbach and M. Johansson, Gap and out-gap breathers in a binary modulated discrete nonlinear Schrödinger model, Eur. Phys. J. D, 29 (2004), 77-93.

[11]

G. James, Centre manifold reduction for quasilinear discrete systems, J. Nonlinear Sci., 13 (2003), 27-63.

[12]

A. KhareK. RasmussenM. Samuelsen and A. Saxena, Exact solutions of the saturable discrete nonlinear Schrödinger equation, J. Phys. A, 38 (2005), 807-814.

[13]

G. Kopidakis, S. Aubry and G. P. Tsironis, Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 87 (2001), Art. ID 165501.

[14]

W. KrolikowskiB. L. Davies and C. Denz, Photorefractive solitons, IEEE J. Quant. Electron., 39 (2003), 3-12.

[15]

J. Kuang and Z. Guo, Homoclinic solutions of a class of periodic difference equations with asymptotically linear nonlinearities, Nonlinear Anal., 89 (2013), 208-218.

[16]

G. Lin and Z. Zhou, Periodic and subharmonic solutions for a $ 2n $th-order difference equation containing both advance and retardation with $ \phi $-Laplacian, Adv. Difference Equ., 2014(2014), Art. ID 74.

[17]

G. Lin and Z. Zhou, Homoclinic solutions in periodic difference equations with mixed nonlinearities, Math. Method Appl. Sci., 39 (2016), 245-260.

[18]

G. Lin and Z. Zhou, Homoclinic solutions in non-periodic discrete $ \phi $-Laplacian equations with mixed nonlinearities, Appl. Math. lett., 64 (2017), 15-20.

[19]

S. Liu and S. Li, Infinitely many solutions for a superlinear elliptic equation, Acta Math. Sinica Chin. Ser., 46 (2003), 625-630.

[20]

R. Livi, R. Franzosi and G. L. Oppo, Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation, Phys. Rev. Lett., 97 (2006), Art. ID 060401.

[21]

S. Ma and Z. Wang, Multibump solutions for discrete periodic nonlinear Schrödinger equations, Z. Angew. Math. Phys., 64 (2013), 1413-1442.

[22]

A. Mai and Z. Zhou, Ground state solutions for the periodic discrete nonlinear Schrödinger equations with superlinear nonlinearities, Abstr. Appl. Anal., 2013 (2013), Art. ID 317139.

[23]

J. Mawhin, Periodic solutions of second order nonlinear difference systems with $ \phi $-Laplacian: a variational approach, Nonlinear Anal., 75 (2012), 4672-4687.

[24]

J. Mawhin, Periodic solutions of second order Lagrangian difference systems with bounded or singular $ \phi $-Laplacian and periodic potential, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1065-1076.

[25]

A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations with saturable nonlinearities, J. Math. Anal. Appl., 371 (2010), 254-265.

[26]

A. Pankov and V. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity, Proc. R. Soc. A, 464 (2008), 3219-3236.

[27]

H. Shi, Gap solitons in periodic discrete Schrödinger equations with nonlinearity, Acta Appl. Math., 109 (2010), 1065-1075.

[28]

H. Shi and H. Zhang, Existence of gap solitons in a periodic discrete nonlinear Schrödinger equations, J. Math. Anal. Appl., 361 (2010), 411-419.

[29]

C. A. Stuart, Locating Cerami sequences in a mountain pass geometry, Commun. Appl. Anal., 2-4 (2011), 569-588.

[30]

A. A. Sukhorukov and Y. S. Kivshar, Generation and stability of discrete gap solitons, Opt. Lett., 28 (2003), 2345-2347.

[31]

X. Tang, Non-Nehari manifold method for periodic discrete superlinear Schrödinger equation, Acta Math. Sin. Engl. Ser., 32 (2016), 463-473.

[32]

X. Tang and J. Chen, Infinitely many homoclinic orbits for a class of discrete Hamiltonian systems, Adv. Difference Equ., 2013 (2013), Art. ID 242.

[33]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.

[34]

M. YangW. Chen and Y. Ding, Solutions for discrete periodic Schrödinger equations with spectrum $ 0 $, Acta. Appl. Math., 110 (2010), 1475-1488.

[35]

G. Zhang and A. Pankov, Standing waves of the discrete nonlinear Schrödinger equations with growing potentials, Commun. Math. Anal., 5 (2008), 38-49.

[36]

Z. Zhou and D. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 58 (2015), 781-790.

[37]

Z. Zhou and J. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differential Equations, 249 (2010), 1199-1212.

[38]

Z. Zhou and J. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta Math. Appl. Sin. Engl. Ser., 29 (2013), 1809-1822.

[39]

Z. ZhouJ. Yu and Y. Chen, Homoclinic solutions in periodic diffrence equations with saturable nonlinearity, Sci. China Math., 54 (2011), 83-93.

[40]

W. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343-358.

[1]

Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 2085-2095. doi: 10.3934/dcdss.2019134

[2]

Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252

[3]

Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅱ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074

[4]

Shu-Cherng Fang, David Y. Gao, Gang-Xuan Lin, Ruey-Lin Sheu, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅰ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1291-1305. doi: 10.3934/jimo.2016073

[5]

Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $ S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007

[6]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[7]

Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091

[8]

Jaime Angulo Pava, César A. Hernández Melo. On stability properties of the Cubic-Quintic Schródinger equation with $\delta$-point interaction. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2093-2116. doi: 10.3934/cpaa.2019094

[9]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[10]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[11]

Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085

[12]

Abdelwahab Bensouilah, Sahbi Keraani. Smoothing property for the $ L^2 $-critical high-order NLS Ⅱ. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2961-2976. doi: 10.3934/dcds.2019123

[13]

Gyu Eun Lee. Local wellposedness for the critical nonlinear Schrödinger equation on $ \mathbb{T}^3 $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2763-2783. doi: 10.3934/dcds.2019116

[14]

Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104

[15]

Jean Mawhin. Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1065-1076. doi: 10.3934/dcdss.2013.6.1065

[16]

Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122

[17]

Joackim Bernier. Bounds on the growth of high discrete Sobolev norms for the cubic discrete nonlinear Schrödinger equations on $ h\mathbb{Z} $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3179-3195. doi: 10.3934/dcds.2019131

[18]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[19]

Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079

[20]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (128)
  • HTML views (231)
  • Cited by (0)

Other articles
by authors

[Back to Top]