July 2018, 17(4): 1511-1560. doi: 10.3934/cpaa.2018073

Dynamical behavior for the solutions of the Navier-Stokes equation

1. 

LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China

2. 

Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan

* Corresponding author: Baoxiang Wang

Received  August 2016 Revised  April 2017 Published  April 2018

We study several quantitative properties of solutions to the incompressible Navier-Stokes equation in three and higher dimensions:
$ \begin{align} u_t -Δ u+u· \nabla u +\nabla p = 0, \ \ {\rm div} u = 0, \ \ u(0, x) = u_0(x). \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 1 \right)\label{NSa} \end{align}$
More precisely, for the blow up mild solutions with initial data in
$L^{∞}(\mathbb{R}^d)$
and
$H^{d/2 -1}(\mathbb{R}^d)$
, we obtain a concentration phenomenon and blowup profile decomposition respectively. On the other hand, if the Fourier support has the form
${\rm supp} \ \widehat{u_0} \subset \{ξ∈ \mathbb{R}^n: ξ_1≥ L \}$
and
$ \|u_0\|_{∞} \ll L$
for some
$L >0$
, then (1) has a unique global solution
$u∈ C(\mathbb{R}_+, L^∞)$
. In 3D, we show the compactness of the set consisting of minimal-
$L^p$
singularity-generating initial data with
$3<p< ∞$
, furthermore, if the mild solution with data in
$L^p({{\mathbb{R}}^{3}})$
blows up in a Type-Ⅰ manner, we prove the existence of a blowup solution which is uniformly bounded in critical Besov spaces
$\dot B^{-1+6/p}_{p/2, ∞}({{\mathbb{R}}^{3}})$
.
Citation: Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073
References:
[1]

B. Abe, The Navier-Stokes equations in a space of bounded functions, Commun. Math. Phys., 338 (2015), 849-865.

[2]

D. Albritton, Blow-up criteria for the Navier-Stokes equations in non-endpoint critical Besov spaces, preprint, arXiv: 1612.04439.

[3]

P. AuscherS. Dubois and P. Tchamitchian, On the stability of global solutions to Navier-Stokes equations in the space, J. Math. Pures Appl., 83 (2004), 673-697.

[4]

H. BaeA. Biswas and E. Tadmor, Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Rational Mech. Anal., 205 (2012), 963-991.

[5]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer, Heidelberg, 2011.

[6]

T. Barker, Uniqueness results for weak Leray-Hopf solutions of the Navier-Stokes system with initial values in critical spaces, J. Math. Fluid Mech., 20 (2018), 133-160.

[7]

T. Barker and G. Seregin, On global solutions to the Navier-Stokes system with large $L^{3, ∞}$ initial data, preprint, arXiv: 1603.03211.

[8]

J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, 1976.

[9]

J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145-171.

[10]

J. Bourgain and N. Pavlovic, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233-2247.

[11]

L. CaffarelliR. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.

[12]

C. P. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in $L^p$, Trans. Amer. Math. Soc., 318 (1990), 179-200.

[13]

M. Cannone, Ondelettes, Paraproduits et Navier-Stokes, (French) [Wavelets, Paraproducts and Navier-Stokes], Diderot Editeur, Paris, 1995.

[14]

M. Cannone and Y. Meyer, Littlewood-Paley decomposition and Navier-Stokes equations, Methods Appl. Anal., 2 (1995), 307-319.

[15]

M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoamericana, 13 (1997), 515-541.

[16]

J.-Y. Chemin, Théorémes d'unicité pour le systéme de Navier-Stokes tridimensionnel, J. Anal. Math., 77 (1999), 27-50.

[17]

J.-Y. CheminI. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations, Ann. of Math., 173 (2011), 983-1012.

[18]

J. C. Cortissoz, J. A. Montero and C. E. Pinilla, On lower bounds for possible blow-up solutions to the periodic Navier-Stokes equation, J. Math. Phys. , 55 (2014), 033101.

[19]

H. Dong and D. Du, The Navier-Stokes equation in the critical Lebesgue space, Commun. Math. Phys., 292 (2009), 811-827.

[20]

L. EscauriazaG. Seregin and V. Sverak, $L_{3,∞}$ solutions of Navier-Stokes equations and backward uniquness, Uspekhi Mat. Nauk., 58 (2003), 3-44.

[21]

C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.

[22]

I. Gallagher, Profile decomposition for solutions of the Navier-Stokes equations, Bull. Soc. Math. France, 129 (2001), 285-316.

[23]

I. GallagherD. Iftimie and F. Planchon, Asympototics and stability for global solutions to the Navier-Stokes equations, Ann. Inst. Fourier(Grenoble), 53 (2003), 1387-1424.

[24]

I. GallagherG. S. Koch and F. Planchnon, A profile decomposition approach to the $L^∞_t(L^3_x)$ Navier-Stokes regularity criterion, Math. Ann., 355 (2013), 1527-1559.

[25]

I. GallagherG. S. Koch and F. Planchon, Blow-up of critical Besov norms at a potential Navier-Stokes singularity, Comm. Math. Phys., 343 (2016), 39-82.

[26]

P. Germain, The second iterate for the Navier-Stokes equation, J. Funct. Anal., 255 (2008), 2248-2264.

[27]

P. Gérard, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var., 3 (1998), 213-233.

[28]

Y. Giga, Solutions for semilinear parabolic equations in $L_p$ and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equations, 62 (1986), 182-212.

[29]

Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data, in Advances in Fluid Dynamics, vol. 4 of Quad. Mat., pp. 27–68. Dept. Math., Seconda Univ. Napoli, Caserta (1999).

[30]

Y. Giga and T. Miyakawa, Solutions in $L^r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.

[31]

Y. Giga and T. Miyakawa, Navier-Stokes flow in $\mathbb{R}^3$ with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations, 14 (1989), 577-618.

[32]

C. Huang and B. Wang, Analyticity for the (generalized) Navier-Stokes equations with rough initial data, preprint, arXiv: 1310.2141.

[33]

T. Iwabuchi, Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices, J. Differential Equations, 248 (2010), 1972-2002.

[34]

H. Jia and V. Sverak, Minimal $L_3$ -initial data for potential Navier-Stokes singularities, SIAM J. Math. Anal., 45 (2013), 1448-1459.

[35]

T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in $ \mathbb{{R}}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.

[36]

C. E. Kenig and G. S. Koch, An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Ann. l'Inst. H. Poincare (C) Non Linear Anal., 28 (2011), 159-187.

[37]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equations, Acta Math., 201 (2008), 147-212.

[38]

G. S. Koch, Profile decompositions for critical Lebesgue and Besov space embeddings, Indiana Univ. Math.J., 59 (2010), 1801-1830.

[39]

G. S. KochN. NadirashviliG. A. Seregin and V. Sverak, Liouville theorems for the Navier-Stokes equations and applications, Acta Math., 203 (2009), 83-105.

[40]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.

[41]

H. KozonoT. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278.

[42]

O. A. Ladyzhenskaya and G. A. Seregin, On partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1 (1999), 365-387.

[43]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.

[44]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002.

[45]

P. G. Lemarié-Rieusset, The Navier-Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, 2016.

[46]

F. H. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), 241-257.

[47]

F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb{R}^3$, Ann, Inst. H. Poincare, AN, 13 (1996), 319-336.

[48]

F. Planchon, Asymptotic behavior of global solutions to the Navier-Stokes equations in ${{\mathbb{R}}^{3}}$, Rev. Mat. Iberoamericana, 14 (1998), 71-93.

[49]

G. PonceR. RackeT. C. Sideris and E. S. Titi, Global stability of large solutions to the 3D Navier-Stokes equations, Comm. Math. Phys., 159 (1994), 329-341.

[50]

E. Poulon, About the possibility of minimal blow up for Navier-Stokes solutions with data in $\dot{H}^s(\mathbb{R}^3)$, preprint, arXiv: 1505.06197.

[51]

E. Poulon, Etude Qualitative d'Eventuelles Singularités dans les Equation de Navier-Stokes Tridimensionnelles pour un Fluide Visqueux, Ph. D thesis, Université Pierre et Marie Curie, 2015.

[52]

J. C. RobinsonW. Sadowski and R. P. Silva, Lower bounds on blow up solutions of the three dimensional Navier-Stokes equations in homogeneous Sobolev spaces, Journal of Mathematical Physics, 260 (2011), 879-891.

[53]

W. Rusin and V. Sverak, Minimal initial data for potential Navier-Stokes singularities, J. Funct. Anal., 260 (2011), 879-891.

[54]

G. Seregin, A certain necessary condition of potential blow up for Navier-Stokes equations, Comm. Math. Phys., 312 (2012), 833-845.

[55]

G. Seregin and V. Sverak, On global weak solutions to the Cauchy problem ˇ for the Navier-Stokes equations with large $L_3$-initial data, Nonlinear Analysis, Theory, Methods and Applications, 154 (2017), 269-296.

[56]

G. Seregin, Necessary conditions of potential blow up for the Navier-Stokes equations, Zap. Nauchn. Sem. POMI, 385 (2010), 187-199.

[57]

G. Seregin, Lecture Notes on Regularity Theory for the Navier-Stokes Equations World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.

[58]

H. Triebel, Theory of Function Spaces, Birkhäuser–Verlag, 1983.

[59]

B. Wang, Exponential Besov spaces and their applications to certain evolution equations with dissipations, Commun. Pure Appl. Anal., 3 (2004), 883-919.

[60]

B. Wang, Z. Huo, C. Hao and Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations. I, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.

[61]

B. WangL. Zhao and B. Guo, Isometric decomposition operators, function spaces $E^λ_{p, q}$ and their applications to nonlinear evolution equations, J. Funct. Anal., 233 (2006), 1-39.

[62]

B. Wang, Ill-posedness for the Navier-Stokes equation in critical Besov spaces $\dot B^{-1}_{∞, q}$, Adv. in Math., 268 (2015), 350-372.

[63]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980), 219-230.

[64]

T. Yoneda, Ill-posedness of the 3D Navier-Stokes equations in a generalized Besov space near $BMO^{-1}$, J. Funct. Anal., 258 (2010), 3376-3387.

show all references

References:
[1]

B. Abe, The Navier-Stokes equations in a space of bounded functions, Commun. Math. Phys., 338 (2015), 849-865.

[2]

D. Albritton, Blow-up criteria for the Navier-Stokes equations in non-endpoint critical Besov spaces, preprint, arXiv: 1612.04439.

[3]

P. AuscherS. Dubois and P. Tchamitchian, On the stability of global solutions to Navier-Stokes equations in the space, J. Math. Pures Appl., 83 (2004), 673-697.

[4]

H. BaeA. Biswas and E. Tadmor, Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Rational Mech. Anal., 205 (2012), 963-991.

[5]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer, Heidelberg, 2011.

[6]

T. Barker, Uniqueness results for weak Leray-Hopf solutions of the Navier-Stokes system with initial values in critical spaces, J. Math. Fluid Mech., 20 (2018), 133-160.

[7]

T. Barker and G. Seregin, On global solutions to the Navier-Stokes system with large $L^{3, ∞}$ initial data, preprint, arXiv: 1603.03211.

[8]

J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, 1976.

[9]

J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145-171.

[10]

J. Bourgain and N. Pavlovic, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233-2247.

[11]

L. CaffarelliR. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.

[12]

C. P. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in $L^p$, Trans. Amer. Math. Soc., 318 (1990), 179-200.

[13]

M. Cannone, Ondelettes, Paraproduits et Navier-Stokes, (French) [Wavelets, Paraproducts and Navier-Stokes], Diderot Editeur, Paris, 1995.

[14]

M. Cannone and Y. Meyer, Littlewood-Paley decomposition and Navier-Stokes equations, Methods Appl. Anal., 2 (1995), 307-319.

[15]

M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoamericana, 13 (1997), 515-541.

[16]

J.-Y. Chemin, Théorémes d'unicité pour le systéme de Navier-Stokes tridimensionnel, J. Anal. Math., 77 (1999), 27-50.

[17]

J.-Y. CheminI. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations, Ann. of Math., 173 (2011), 983-1012.

[18]

J. C. Cortissoz, J. A. Montero and C. E. Pinilla, On lower bounds for possible blow-up solutions to the periodic Navier-Stokes equation, J. Math. Phys. , 55 (2014), 033101.

[19]

H. Dong and D. Du, The Navier-Stokes equation in the critical Lebesgue space, Commun. Math. Phys., 292 (2009), 811-827.

[20]

L. EscauriazaG. Seregin and V. Sverak, $L_{3,∞}$ solutions of Navier-Stokes equations and backward uniquness, Uspekhi Mat. Nauk., 58 (2003), 3-44.

[21]

C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.

[22]

I. Gallagher, Profile decomposition for solutions of the Navier-Stokes equations, Bull. Soc. Math. France, 129 (2001), 285-316.

[23]

I. GallagherD. Iftimie and F. Planchon, Asympototics and stability for global solutions to the Navier-Stokes equations, Ann. Inst. Fourier(Grenoble), 53 (2003), 1387-1424.

[24]

I. GallagherG. S. Koch and F. Planchnon, A profile decomposition approach to the $L^∞_t(L^3_x)$ Navier-Stokes regularity criterion, Math. Ann., 355 (2013), 1527-1559.

[25]

I. GallagherG. S. Koch and F. Planchon, Blow-up of critical Besov norms at a potential Navier-Stokes singularity, Comm. Math. Phys., 343 (2016), 39-82.

[26]

P. Germain, The second iterate for the Navier-Stokes equation, J. Funct. Anal., 255 (2008), 2248-2264.

[27]

P. Gérard, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var., 3 (1998), 213-233.

[28]

Y. Giga, Solutions for semilinear parabolic equations in $L_p$ and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equations, 62 (1986), 182-212.

[29]

Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data, in Advances in Fluid Dynamics, vol. 4 of Quad. Mat., pp. 27–68. Dept. Math., Seconda Univ. Napoli, Caserta (1999).

[30]

Y. Giga and T. Miyakawa, Solutions in $L^r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.

[31]

Y. Giga and T. Miyakawa, Navier-Stokes flow in $\mathbb{R}^3$ with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations, 14 (1989), 577-618.

[32]

C. Huang and B. Wang, Analyticity for the (generalized) Navier-Stokes equations with rough initial data, preprint, arXiv: 1310.2141.

[33]

T. Iwabuchi, Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices, J. Differential Equations, 248 (2010), 1972-2002.

[34]

H. Jia and V. Sverak, Minimal $L_3$ -initial data for potential Navier-Stokes singularities, SIAM J. Math. Anal., 45 (2013), 1448-1459.

[35]

T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in $ \mathbb{{R}}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.

[36]

C. E. Kenig and G. S. Koch, An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Ann. l'Inst. H. Poincare (C) Non Linear Anal., 28 (2011), 159-187.

[37]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equations, Acta Math., 201 (2008), 147-212.

[38]

G. S. Koch, Profile decompositions for critical Lebesgue and Besov space embeddings, Indiana Univ. Math.J., 59 (2010), 1801-1830.

[39]

G. S. KochN. NadirashviliG. A. Seregin and V. Sverak, Liouville theorems for the Navier-Stokes equations and applications, Acta Math., 203 (2009), 83-105.

[40]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.

[41]

H. KozonoT. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278.

[42]

O. A. Ladyzhenskaya and G. A. Seregin, On partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1 (1999), 365-387.

[43]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.

[44]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002.

[45]

P. G. Lemarié-Rieusset, The Navier-Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, 2016.

[46]

F. H. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), 241-257.

[47]

F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb{R}^3$, Ann, Inst. H. Poincare, AN, 13 (1996), 319-336.

[48]

F. Planchon, Asymptotic behavior of global solutions to the Navier-Stokes equations in ${{\mathbb{R}}^{3}}$, Rev. Mat. Iberoamericana, 14 (1998), 71-93.

[49]

G. PonceR. RackeT. C. Sideris and E. S. Titi, Global stability of large solutions to the 3D Navier-Stokes equations, Comm. Math. Phys., 159 (1994), 329-341.

[50]

E. Poulon, About the possibility of minimal blow up for Navier-Stokes solutions with data in $\dot{H}^s(\mathbb{R}^3)$, preprint, arXiv: 1505.06197.

[51]

E. Poulon, Etude Qualitative d'Eventuelles Singularités dans les Equation de Navier-Stokes Tridimensionnelles pour un Fluide Visqueux, Ph. D thesis, Université Pierre et Marie Curie, 2015.

[52]

J. C. RobinsonW. Sadowski and R. P. Silva, Lower bounds on blow up solutions of the three dimensional Navier-Stokes equations in homogeneous Sobolev spaces, Journal of Mathematical Physics, 260 (2011), 879-891.

[53]

W. Rusin and V. Sverak, Minimal initial data for potential Navier-Stokes singularities, J. Funct. Anal., 260 (2011), 879-891.

[54]

G. Seregin, A certain necessary condition of potential blow up for Navier-Stokes equations, Comm. Math. Phys., 312 (2012), 833-845.

[55]

G. Seregin and V. Sverak, On global weak solutions to the Cauchy problem ˇ for the Navier-Stokes equations with large $L_3$-initial data, Nonlinear Analysis, Theory, Methods and Applications, 154 (2017), 269-296.

[56]

G. Seregin, Necessary conditions of potential blow up for the Navier-Stokes equations, Zap. Nauchn. Sem. POMI, 385 (2010), 187-199.

[57]

G. Seregin, Lecture Notes on Regularity Theory for the Navier-Stokes Equations World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.

[58]

H. Triebel, Theory of Function Spaces, Birkhäuser–Verlag, 1983.

[59]

B. Wang, Exponential Besov spaces and their applications to certain evolution equations with dissipations, Commun. Pure Appl. Anal., 3 (2004), 883-919.

[60]

B. Wang, Z. Huo, C. Hao and Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations. I, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.

[61]

B. WangL. Zhao and B. Guo, Isometric decomposition operators, function spaces $E^λ_{p, q}$ and their applications to nonlinear evolution equations, J. Funct. Anal., 233 (2006), 1-39.

[62]

B. Wang, Ill-posedness for the Navier-Stokes equation in critical Besov spaces $\dot B^{-1}_{∞, q}$, Adv. in Math., 268 (2015), 350-372.

[63]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980), 219-230.

[64]

T. Yoneda, Ill-posedness of the 3D Navier-Stokes equations in a generalized Besov space near $BMO^{-1}$, J. Funct. Anal., 258 (2010), 3376-3387.

[1]

Xiaofeng Hou, Limei Zhu. Serrin-type blowup criterion for full compressible Navier-Stokes-Maxwell system with vacuum. Communications on Pure & Applied Analysis, 2016, 15 (1) : 161-183. doi: 10.3934/cpaa.2016.15.161

[2]

Paolo Maremonti. A note on the Navier-Stokes IBVP with small data in $L^n$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 255-267. doi: 10.3934/dcdss.2016.9.255

[3]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[4]

Jerry L. Bona, Stéphane Vento, Fred B. Weissler. Singularity formation and blowup of complex-valued solutions of the modified KdV equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4811-4840. doi: 10.3934/dcds.2013.33.4811

[5]

Manil T. Mohan, Sivaguru S. Sritharan. $\mathbb{L}^p-$solutions of the stochastic Navier-Stokes equations subject to Lévy noise with $\mathbb{L}^m(\mathbb{R}^m)$ initial data. Evolution Equations & Control Theory, 2017, 6 (3) : 409-425. doi: 10.3934/eect.2017021

[6]

Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67

[7]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the existence of solutions for the Navier-Stokes system in a sum of weak-$L^{p}$ spaces. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 171-183. doi: 10.3934/dcds.2010.27.171

[8]

Pengyu Chen, Xuping Zhang, Yongxiang Li. A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1975-1992. doi: 10.3934/cpaa.2018094

[9]

Yanghong Huang, Andrea Bertozzi. Asymptotics of blowup solutions for the aggregation equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1309-1331. doi: 10.3934/dcdsb.2012.17.1309

[10]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[11]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[12]

Xiangdi Huang, Zhouping Xin. On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4477-4493. doi: 10.3934/dcds.2016.36.4477

[13]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[14]

Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087

[15]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

[16]

Bingbing Ding, Ingo Witt, Huicheng Yin. Blowup time and blowup mechanism of small data solutions to general 2-D quasilinear wave equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 719-744. doi: 10.3934/cpaa.2017035

[17]

Zhengce Zhang, Bei Hu. Gradient blowup rate for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 767-779. doi: 10.3934/dcds.2010.26.767

[18]

Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719

[19]

Baoquan Yuan. Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2211-2219. doi: 10.3934/dcds.2013.33.2211

[20]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (23)
  • HTML views (66)
  • Cited by (0)

Other articles
by authors

[Back to Top]