July 2018, 17(4): 1387-1406. doi: 10.3934/cpaa.2018068

Focusing nlkg equation with singular potential

1. 

Department of Mathematics, University of Pisa, Largo B. Pontecorvo 5 Pisa, 56127 Italy

2. 

Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

3. 

Department of Mathematics, University of Bari, Via E. Orabona 4 I-70125 Bari, Italy

* Corresponding author: Sandra Lucente

Received  January 2017 Revised  June 2017 Published  April 2018

Fund Project: The first author was supported by University of Pisa, project no. PRA-2016-41"Fenomeni singolari in problemi deterministici e stocastici ed applicazioni"; by the Contract FIRB" Dinamiche Dispersive: Analisi di Fourier e Metodi Variazionali", 2012; by INDAM, GNAMPA -Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni; by Institute of Mathematics and Informatics, Bulgarian Academy of Sciences; by Top Global University Project, Waseda University. The second author was supported in part by Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) Progetto 2017 Equazioni di tipo dispersivo e proprietà asintotiche

We study the dynamics for the focusing nonlinear Klein Gordon equation with a positive, singular, radial potential and initial data in energy space. More precisely, we deal with
$u_{tt}-Δ u+m^2 u=|x|^{-a}|u|^{p-1}u$
with
$0 < a < 2$
. In dimension
$d≥3$
, we establish the existence and uniqueness of the ground state solution that enables us to define a threshold size for the initial data that separates global existence and blow-up. We find a critical exponent depending on
$a$
. We establish a global existence result for subcritical exponents and subcritical energy data. For subcritical exponents and critical energy some solutions blow-up, other solutions exist for all time due to the decomposition of the energy space of the initial data into two complementary sets.
Citation: Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068
References:
[1]

V. Combet and F. Genoud, Classification of minimal mass blow-up solutions for an L2 critical inhomogeneous NLS, J-Evol. Eq., 16 (2016), 483-500.

[2]

Z. Gan and J. Zhang, Standing waves of the inhomogeneous Klein-Gordon equations with critical exponent, Acta Math. Sin. (Engl. Ser.), 22 (2006), 357-366.

[3]

Z. Gan and J. Zhang, Cross-constrained variational problem and the non-linear Klein-Gordon equations, Glasg. Math. J., 50 (2008), 467-481.

[4]

V. Georgiev and S. Lucente, Breaking Symmetry in focusing NLKG with potential, submitted

[5]

S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460. Errata arXiv: 1506.06248.

[6]

S. IbrahimN. Masmoudi and K. Nakanishi, Threshold solutions in the case of mass-shift for the critical Klein-Gordon equation, Transactions of the American Mathematical Society, 366 (2014), 5653-5669.

[7]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-upup for the energycritical focusing non-linear wave equation, Acta Mathematica, 201 (2008), 147-212.

[8]

E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, 2nd edition, AMS, 2001.

[9]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.

[10]

W. A. Strauss, Existence of solitary waves in higher dimension, Comm. Math. Phys., 55 (1977), 149-162.

[11]

J. SuZ. Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differ. Equ., 238 (2007), 201-219.

[12]

E. Yanagida, Uniqueness of positive radial solutions of ∆u+g(r)u+h(r)up = 0 in ${{\mathbb{R}}^{n}}$, Arch. Rational Mech. Anal., 155 (1991), 257-274.

[13]

J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Anal. Ser. A: Theory Methods, 48 (2002), 191-207.

show all references

References:
[1]

V. Combet and F. Genoud, Classification of minimal mass blow-up solutions for an L2 critical inhomogeneous NLS, J-Evol. Eq., 16 (2016), 483-500.

[2]

Z. Gan and J. Zhang, Standing waves of the inhomogeneous Klein-Gordon equations with critical exponent, Acta Math. Sin. (Engl. Ser.), 22 (2006), 357-366.

[3]

Z. Gan and J. Zhang, Cross-constrained variational problem and the non-linear Klein-Gordon equations, Glasg. Math. J., 50 (2008), 467-481.

[4]

V. Georgiev and S. Lucente, Breaking Symmetry in focusing NLKG with potential, submitted

[5]

S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460. Errata arXiv: 1506.06248.

[6]

S. IbrahimN. Masmoudi and K. Nakanishi, Threshold solutions in the case of mass-shift for the critical Klein-Gordon equation, Transactions of the American Mathematical Society, 366 (2014), 5653-5669.

[7]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-upup for the energycritical focusing non-linear wave equation, Acta Mathematica, 201 (2008), 147-212.

[8]

E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, 2nd edition, AMS, 2001.

[9]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.

[10]

W. A. Strauss, Existence of solitary waves in higher dimension, Comm. Math. Phys., 55 (1977), 149-162.

[11]

J. SuZ. Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differ. Equ., 238 (2007), 201-219.

[12]

E. Yanagida, Uniqueness of positive radial solutions of ∆u+g(r)u+h(r)up = 0 in ${{\mathbb{R}}^{n}}$, Arch. Rational Mech. Anal., 155 (1991), 257-274.

[13]

J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Anal. Ser. A: Theory Methods, 48 (2002), 191-207.

[1]

Joachim Krieger, Kenji Nakanishi, Wilhelm Schlag. Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2423-2450. doi: 10.3934/dcds.2013.33.2423

[2]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[3]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[4]

Claudianor Oliveira Alves, M. A.S. Souto. On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Communications on Pure & Applied Analysis, 2002, 1 (3) : 417-431. doi: 10.3934/cpaa.2002.1.417

[5]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[6]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[7]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[8]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[9]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[10]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[11]

Xiaoli Zhu, Fuyi Li, Ting Rong. Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2465-2485. doi: 10.3934/cpaa.2015.14.2465

[12]

Shiming Li, Yongsheng Li, Wei Yan. A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1899-1912. doi: 10.3934/dcdss.2016077

[13]

Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633

[14]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[15]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[16]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[17]

Norihisa Ikoma. Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 943-966. doi: 10.3934/dcds.2015.35.943

[18]

Dengfeng Lü. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1781-1795. doi: 10.3934/cpaa.2016014

[19]

Xiao-Jing Zhong, Chun-Lei Tang. The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem. Communications on Pure & Applied Analysis, 2017, 16 (2) : 611-628. doi: 10.3934/cpaa.2017030

[20]

Julián López-Gómez, Pavol Quittner. Complete and energy blow-up in indefinite superlinear parabolic problems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 169-186. doi: 10.3934/dcds.2006.14.169

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (23)
  • HTML views (52)
  • Cited by (0)

Other articles
by authors

[Back to Top]