July 2018, 17(4): 1331-1347. doi: 10.3934/cpaa.2018065

Spectral stability of bi-frequency solitary waves in Soler and Dirac-Klein-Gordon models

1. 

Universite Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon CEDEX, France

2. 

Texas A & M University, College Station, TX 77843, USA

3. 

IITP, Moscow 127051, Russia

4. 

St. Petersburg State University, St. Petersburg 199178, Russia

* Corresponding author: Andrew Comech

Received  November 2017 Revised  February 2018 Published  April 2018

Fund Project: The first author aknowledges the support of Region Bourgogne Franche-Comté through the project "Projet du LMB: Analyse mathematique et simulation numérique d'EDP issues de problèmes de contrôle et du trafic routier". The second author was supported by the Russian Foundation for Sciences (project 14-50-00150)

We construct bi-frequency solitary waves of the nonlinear Dirac equation with the scalar self-interaction, known as the Soler model (with an arbitrary nonlinearity and in arbitrary dimension) and the Dirac-Klein-Gordon with Yukawa self-interaction. These solitary waves provide a natural implementation of qubit and qudit states in the theory of quantum computing.

We show the relation of $± 2ω\mathrm{i}$ eigenvalues of the linearization at a solitary wave, Bogoliubov $\mathbf{SU}(1,1)$ symmetry, and the existence of bi-frequency solitary waves. We show that the spectral stability of these waves reduces to spectral stability of usual (one-frequency) solitary waves.

Citation: Nabile Boussïd, Andrew Comech. Spectral stability of bi-frequency solitary waves in Soler and Dirac-Klein-Gordon models. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1331-1347. doi: 10.3934/cpaa.2018065
References:
[1]

A. Aceves, A. Auditore, M. Conforti and C. De Angelis, Discrete localized modes in binary waveguide arrays, in Nonlinear Photonics (NLP), 2013 IEEE 2nd International Workshop, 2013, 38–42.

[2]

A. AuditoreM. ConfortiC. De Angelis and A. B. Aceves, Dark-antidark solitons in waveguide arrays with alternating positive-negative couplings, Optics Communications, 297 (2013), 125-128.

[3]

G. Berkolaiko and A. Comech, On spectral stability of solitary waves of nonlinear Dirac equation in 1D, Math. Model. Nat. Phenom., 7 (2012), 13-31. doi: 10.1051/mmnp/20127202.

[4]

A. BetlejS. SuntsovK. G. MakrisL. JankovicD. N. ChristodoulidesG. I. StegemanJ. FiniR. T. Bise and D. J. DiGiovanni, All-optical switching and multifrequency generation in a dual-core photonic crystal fiber, Opt. Lett., 31 (2006), 1480-1482.

[5]

N. Boussaïd and A. Comech, Nonrelativistic asymptotics of solitary waves in the Dirac equation with Soler-type nonlinearity, SIAM J. Math. Anal., 49 (2017), 2527-2572. doi: 10.1137/16M1081385.

[6]

N. Boussaïd and A. Comech, Spectral stability of small amplitude solitary waves of the Dirac equation with the Soler-type nonlinearity, arXiv e-prints, arXiv: 1705.05481.

[7]

N. Boussaïd and S. Cuccagna, On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), 1001-1056. doi: 10.1080/03605302.2012.665973.

[8]

N. J. CerfM. BourennaneA. Karlsson and N. Gisin, Security of quantum key distribution using d-level systems, Physical Review Letters, 88 (2002), 127902.

[9]

J. M. Chadam and R. T. Glassey, On certain global solutions of the Cauchy problem for the (classical) coupled Klein-Gordon-Dirac equations in one and three space dimensions, Arch. Rational Mech. Anal., 54 (1974), 223-237. doi: 10.1007/BF00250789.

[10]

A. ComechT. V. Phan and A. Stefanov, Asymptotic stability of solitary waves in generalized Gross–Neveu model, Ann. Inst. H. Poincare Anal. Non Linéaire, 34 (2017), 157-196. doi: 10.1016/j.anihpc.2015.11.001.

[11]

A. ComechM. Guan and S. Gustafson, On linear instability of solitary waves for the nonlinear Dirac equation, Ann. Inst. H. Poincare Anal. Non Linéaire, 31 (2014), 639-654. doi: 10.1016/j.anihpc.2013.06.001.

[12]

J. Cuevas-MaraverP. G. KevrekidisA. SaxenaF. CooperA. KhareA. Comech and C. M. Bender, Solitary waves of a $ \mathcal{PT}$-symmetric nonlinear Dirac equation, IEEE Journal of Selected Topics in Quantum Electronics, 22 (2016), 1-9.

[13]

J. Cuevas-MaraverP. G. KevrekidisA. SaxenaA. Comech and R. Lan, Stability of solitary waves and vortices in a 2D nonlinear Dirac model, Phys. Rev. Lett., 116 (2016), 214101. doi: 10.1103/PhysRevLett.116.214101.

[14]

T. DurtD. KaszlikowskiJ.-L. Chen and L. C. Kwek, Security of quantum key distributions with entangled qudits, Phys. Rev. A, 69 (2004), 032313. doi: 10.1103/PhysRevA.69.032313.

[15]

B. J. EggletonC. M. De Sterke and R. E. Slusher, Nonlinear pulse propagation in Bragg gratings, J. Opt. Soc. Am. B, 14 (1997), 2980-2993.

[16]

A. Galindo, A remarkable invariance of classical Dirac Lagrangians, Lett. Nuovo Cimento (2), 20 (1977), 210-212. doi: 10.1007/BF02785129.

[17]

D. J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D, 10 (1974), 3235-3253.

[18]

D. D. Ivanenko, Notes to the theory of interaction via particles, Zh. Éksp. Teor. Fiz, 8 (1938), 260-266.

[19]

M. KuesC. ReimerP. RoztockiL. R. CortS. SciaraB. WetzelY. ZhangA. CinoS. T. ChuB. E. LittleD. J. MossL. CaspaniJ. Aza and R. Morandotti, On-chip generation of high-dimensional entangled quantum states and their coherent control, Nature, 546 (2017), 622-626. doi: 10.1038/nature22986.

[20]

N. Lazarides and G. P. Tsironis, Gain-driven discrete breathers in $\mathcal{P}\mathcal{T}$-symmetric nonlinear metamaterials, Phys. Rev. Lett., 110 (2013), 053901. doi: 10.1103/PhysRevLett.110.053901.

[21]

S. Y. Lee and A. Gavrielides, Quantization of the localized solutions in two-dimensional field theories of massive fermions, Phys. Rev. D, 12 (1975), 3880-3886.

[22]

A. MariniS. Longhi and F. Biancalana, Optical simulation of neutrino oscillations in binary waveguide arrays, Phys. Rev. Lett., 113 (2014), 150401. doi: 10.1103/PhysRevLett.113.150401.

[23]

A. A. Melnikov and L. E. Fedichkin, Quantum walks of interacting fermions on a cycle graph, Sci. Rep., 6 (2016), 34226. doi: 10.1038/srep34226.

[24]

R. MorandottiD. MandelikY. SilberbergJ. S. AitchisonM. SorelD. N. ChristodoulidesA. A. Sukhorukov and Y. S. Kivshar, Observation of discrete gap solitons in binary waveguide arrays, Opt. Lett., 29 (2004), 2890-2892.

[25]

T. Ozawa and K. Yamauchi, Structure of Dirac matrices and invariants for nonlinear Dirac equations, Differential Integral Equations, 17 (2004), 971-982.

[26]

D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small gap solitons in nonlinear Dirac equations, J. Math. Phys., 53 (2012), 073705, 27. doi: 10.1063/1.4731477.

[27]

J. SchindlerZ. LinJ. M. LeeH. RamezaniF. M. Ellis and T. Kottos, $\mathcal{PT}$-symmetric electronics, Journal of Physics A: Mathematical and Theoretical, 45 (2012), 444029.

[28]

J. SchindlerA. LiM. C. ZhengF. M. Ellis and T. Kottos, Experimental study of active LRC circuits with $\mathcal{PT}$ symmetries, Phys. Rev. A, 84 (2011), 040101. doi: 10.1103/PhysRevA.84.040101.

[29]

M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, 1 (1970), 2766-2769.

[30]

W. E. Thirring, A soluble relativistic field theory, Ann. Physics, 3 (1958), 91-112. doi: 10.1016/0003-4916(58)90015-0.

[31]

M. Wakano, Intensely localized solutions of the classical Dirac-Maxwell field equations, Progr. Theoret. Phys., 35 (1966), 1117-1141.

show all references

References:
[1]

A. Aceves, A. Auditore, M. Conforti and C. De Angelis, Discrete localized modes in binary waveguide arrays, in Nonlinear Photonics (NLP), 2013 IEEE 2nd International Workshop, 2013, 38–42.

[2]

A. AuditoreM. ConfortiC. De Angelis and A. B. Aceves, Dark-antidark solitons in waveguide arrays with alternating positive-negative couplings, Optics Communications, 297 (2013), 125-128.

[3]

G. Berkolaiko and A. Comech, On spectral stability of solitary waves of nonlinear Dirac equation in 1D, Math. Model. Nat. Phenom., 7 (2012), 13-31. doi: 10.1051/mmnp/20127202.

[4]

A. BetlejS. SuntsovK. G. MakrisL. JankovicD. N. ChristodoulidesG. I. StegemanJ. FiniR. T. Bise and D. J. DiGiovanni, All-optical switching and multifrequency generation in a dual-core photonic crystal fiber, Opt. Lett., 31 (2006), 1480-1482.

[5]

N. Boussaïd and A. Comech, Nonrelativistic asymptotics of solitary waves in the Dirac equation with Soler-type nonlinearity, SIAM J. Math. Anal., 49 (2017), 2527-2572. doi: 10.1137/16M1081385.

[6]

N. Boussaïd and A. Comech, Spectral stability of small amplitude solitary waves of the Dirac equation with the Soler-type nonlinearity, arXiv e-prints, arXiv: 1705.05481.

[7]

N. Boussaïd and S. Cuccagna, On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), 1001-1056. doi: 10.1080/03605302.2012.665973.

[8]

N. J. CerfM. BourennaneA. Karlsson and N. Gisin, Security of quantum key distribution using d-level systems, Physical Review Letters, 88 (2002), 127902.

[9]

J. M. Chadam and R. T. Glassey, On certain global solutions of the Cauchy problem for the (classical) coupled Klein-Gordon-Dirac equations in one and three space dimensions, Arch. Rational Mech. Anal., 54 (1974), 223-237. doi: 10.1007/BF00250789.

[10]

A. ComechT. V. Phan and A. Stefanov, Asymptotic stability of solitary waves in generalized Gross–Neveu model, Ann. Inst. H. Poincare Anal. Non Linéaire, 34 (2017), 157-196. doi: 10.1016/j.anihpc.2015.11.001.

[11]

A. ComechM. Guan and S. Gustafson, On linear instability of solitary waves for the nonlinear Dirac equation, Ann. Inst. H. Poincare Anal. Non Linéaire, 31 (2014), 639-654. doi: 10.1016/j.anihpc.2013.06.001.

[12]

J. Cuevas-MaraverP. G. KevrekidisA. SaxenaF. CooperA. KhareA. Comech and C. M. Bender, Solitary waves of a $ \mathcal{PT}$-symmetric nonlinear Dirac equation, IEEE Journal of Selected Topics in Quantum Electronics, 22 (2016), 1-9.

[13]

J. Cuevas-MaraverP. G. KevrekidisA. SaxenaA. Comech and R. Lan, Stability of solitary waves and vortices in a 2D nonlinear Dirac model, Phys. Rev. Lett., 116 (2016), 214101. doi: 10.1103/PhysRevLett.116.214101.

[14]

T. DurtD. KaszlikowskiJ.-L. Chen and L. C. Kwek, Security of quantum key distributions with entangled qudits, Phys. Rev. A, 69 (2004), 032313. doi: 10.1103/PhysRevA.69.032313.

[15]

B. J. EggletonC. M. De Sterke and R. E. Slusher, Nonlinear pulse propagation in Bragg gratings, J. Opt. Soc. Am. B, 14 (1997), 2980-2993.

[16]

A. Galindo, A remarkable invariance of classical Dirac Lagrangians, Lett. Nuovo Cimento (2), 20 (1977), 210-212. doi: 10.1007/BF02785129.

[17]

D. J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D, 10 (1974), 3235-3253.

[18]

D. D. Ivanenko, Notes to the theory of interaction via particles, Zh. Éksp. Teor. Fiz, 8 (1938), 260-266.

[19]

M. KuesC. ReimerP. RoztockiL. R. CortS. SciaraB. WetzelY. ZhangA. CinoS. T. ChuB. E. LittleD. J. MossL. CaspaniJ. Aza and R. Morandotti, On-chip generation of high-dimensional entangled quantum states and their coherent control, Nature, 546 (2017), 622-626. doi: 10.1038/nature22986.

[20]

N. Lazarides and G. P. Tsironis, Gain-driven discrete breathers in $\mathcal{P}\mathcal{T}$-symmetric nonlinear metamaterials, Phys. Rev. Lett., 110 (2013), 053901. doi: 10.1103/PhysRevLett.110.053901.

[21]

S. Y. Lee and A. Gavrielides, Quantization of the localized solutions in two-dimensional field theories of massive fermions, Phys. Rev. D, 12 (1975), 3880-3886.

[22]

A. MariniS. Longhi and F. Biancalana, Optical simulation of neutrino oscillations in binary waveguide arrays, Phys. Rev. Lett., 113 (2014), 150401. doi: 10.1103/PhysRevLett.113.150401.

[23]

A. A. Melnikov and L. E. Fedichkin, Quantum walks of interacting fermions on a cycle graph, Sci. Rep., 6 (2016), 34226. doi: 10.1038/srep34226.

[24]

R. MorandottiD. MandelikY. SilberbergJ. S. AitchisonM. SorelD. N. ChristodoulidesA. A. Sukhorukov and Y. S. Kivshar, Observation of discrete gap solitons in binary waveguide arrays, Opt. Lett., 29 (2004), 2890-2892.

[25]

T. Ozawa and K. Yamauchi, Structure of Dirac matrices and invariants for nonlinear Dirac equations, Differential Integral Equations, 17 (2004), 971-982.

[26]

D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small gap solitons in nonlinear Dirac equations, J. Math. Phys., 53 (2012), 073705, 27. doi: 10.1063/1.4731477.

[27]

J. SchindlerZ. LinJ. M. LeeH. RamezaniF. M. Ellis and T. Kottos, $\mathcal{PT}$-symmetric electronics, Journal of Physics A: Mathematical and Theoretical, 45 (2012), 444029.

[28]

J. SchindlerA. LiM. C. ZhengF. M. Ellis and T. Kottos, Experimental study of active LRC circuits with $\mathcal{PT}$ symmetries, Phys. Rev. A, 84 (2011), 040101. doi: 10.1103/PhysRevA.84.040101.

[29]

M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, 1 (1970), 2766-2769.

[30]

W. E. Thirring, A soluble relativistic field theory, Ann. Physics, 3 (1958), 91-112. doi: 10.1016/0003-4916(58)90015-0.

[31]

M. Wakano, Intensely localized solutions of the classical Dirac-Maxwell field equations, Progr. Theoret. Phys., 35 (1966), 1117-1141.

[1]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[2]

Andrew Comech, David Stuart. Small amplitude solitary waves in the Dirac-Maxwell system. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1349-1370. doi: 10.3934/cpaa.2018066

[3]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[4]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[5]

Maria J. Esteban, Eric Séré. An overview on linear and nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 381-397. doi: 10.3934/dcds.2002.8.381

[6]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[7]

Feng Xie. Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1075-1100. doi: 10.3934/dcdsb.2012.17.1075

[8]

Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067

[9]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[10]

Fábio Natali, Ademir Pastor. Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system. Communications on Pure & Applied Analysis, 2010, 9 (2) : 413-430. doi: 10.3934/cpaa.2010.9.413

[11]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[12]

Sihong Shao, Huazhong Tang. Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 623-640. doi: 10.3934/dcdsb.2006.6.623

[13]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[14]

Noboru Okazawa, Kentarou Yoshii. Linear evolution equations with strongly measurable families and application to the Dirac equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 723-744. doi: 10.3934/dcdss.2011.4.723

[15]

Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of Klein-Gordon equations in a semiclassical regime. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2389-2401. doi: 10.3934/dcds.2013.33.2389

[16]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[17]

Orlando Lopes. A linearized instability result for solitary waves. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 115-119. doi: 10.3934/dcds.2002.8.115

[18]

Igor Freire, Ben Muatjetjeja. Symmetry analysis of a Lane-Emden-Klein-Gordon-Fock system with central symmetry. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 667-673. doi: 10.3934/dcdss.2018041

[19]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

[20]

Saroj P. Pradhan, Janos Turi. Parameter dependent stability/instability in a human respiratory control system model. Conference Publications, 2013, 2013 (special) : 643-652. doi: 10.3934/proc.2013.2013.643

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (35)
  • HTML views (119)
  • Cited by (0)

Other articles
by authors

[Back to Top]