• Previous Article
    Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application
  • CPAA Home
  • This Issue
  • Next Article
    Cyclicity of degenerate graphic $DF_{2a}$ of Dumortier-Roussarie-Rousseau program
2018, 17(3): 1295-1304. doi: 10.3934/cpaa.2018062

Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system

1. 

Department of Mathematics, Indian Institute of Technology Madras, Chennai-600036, India

2. 

Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA

3. 

Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

* Corresponding author: R. Shivaji.

Received  March 2016 Revised  August 2016 Published  January 2018

In this paper we study the positive solutions to the
$n\times n$
$p$
-Laplacian system:
$\begin{equation*}\begin{cases}-\left(\varphi_{p_1}(u_1')\right)' = \lambda h_1(t) \left(u_1^{p_1-1-\alpha_1}+f_1(u_2)\right),\quad t\in (0,1),\\-\left(\varphi_{p_2}(u_2')\right)' = \lambda h_2(t) \left(u_2^{p_2-1-\alpha_2}+f_2(u_3)\right),\quad t\in (0,1),\\\quad\quad\quad\vdots\qquad\,\: =\quad\quad\quad\quad\quad\quad \vdots\\-\left(\varphi_{p_n}(u_n')\right)' = \lambda h_n(t) \left(u_n^{p_n-1-\alpha_n}+f_n(u_1)\right),~~\, t\in (0,1),\\\quad\,\,\,\, u_j(0)=0=u_j(1); ~~ j=1,2,\dots,n, \\ \end{cases}\end{equation*}$
where
$\lambda$
is a positive parameter,
$p_j>1$
,
$\alpha_j\in(0,p_j-1)$
,
$\varphi_{p_j}(w)=|w|^{p_j-2}w$
, and
$h_j \in C((0,1),(0, \infty))\cap L^1((0,1),(0,\infty))$
for
$j=1,2,\dots,n$
. Here
$f_j:[0,\infty)\rightarrow[0,\infty)$
,
$j=1,2,\dots,n$
are nontrivial nondecreasing continuous functions with
$f_j(0)=0$
and satisfy a combined sublinear condition at infinity. We discuss here a bifurcation result, an existence result for
$\lambda>0$
, and a multiplicity result for a certain range of
$\lambda$
. We establish our results through the method of sub-super solutions.
Citation: Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062
References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 229-256.

[2]

Y. H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional p-Laplacian, J. Differential Equations, 229 (2006), 620-709.

[3]

R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators, J. Korean Math. Soc., 37 (2000), 665-685.

[4]

R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, Lecture Notes in Pure and Appl. Math., 109 (1987), 561-566.

[5]

R. Shivaji and B. Son, Bifurcation and multiplicity results for classes of $p,q$ Laplacian systems, Topol. Methods Nonlinear Anal., 48 (2016), 103-114.

show all references

References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 229-256.

[2]

Y. H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional p-Laplacian, J. Differential Equations, 229 (2006), 620-709.

[3]

R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators, J. Korean Math. Soc., 37 (2000), 665-685.

[4]

R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, Lecture Notes in Pure and Appl. Math., 109 (1987), 561-566.

[5]

R. Shivaji and B. Son, Bifurcation and multiplicity results for classes of $p,q$ Laplacian systems, Topol. Methods Nonlinear Anal., 48 (2016), 103-114.

Figure 1.  Bifurcation of solution from the origin.
Figure 2.  Bifurcation for all $\lambda>0.$
Figure 3.  Multiplicity results for certain range of $\lambda$ .
[1]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global \begin{document} $\mathbf{W^{1,p}}$ \end{document}-attractors for the damped-driven Euler system in \begin{document} $\mathbb R^2$ \end{document}. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[2]

Karina Samvelyan, Frol Zapolsky. Rigidity of the \begin{document}${{L}^{p}}$\end{document}-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004

[3]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with \begin{document}$ p(x) $\end{document}-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[4]

Sanjiban Santra. On the positive solutions for a perturbed negative exponent problem on \begin{document} $\mathbb{R}^3$ \end{document}. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1441-1460. doi: 10.3934/dcds.2018059

[5]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in \begin{document} $\mathbb{R}^{3}$\end{document}. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[6]

Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the \begin{document}$N$\end{document} -dimensional real space-part Ⅱ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074

[7]

Shu-Cherng Fang, David Y. Gao, Gang-Xuan Lin, Ruey-Lin Sheu, Wenxun Xing. Double well potential function and its optimization in the \begin{document}$N$\end{document} -dimensional real space-part Ⅰ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1291-1305. doi: 10.3934/jimo.2016073

[8]

Qianying Xiao, Zuohuan Zheng. \begin{document}$C^1$\end{document} weak Palis conjecture for nonsingular flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1809-1832. doi: 10.3934/dcds.2018074

[9]

Diego Maldonado. On interior \begin{document} $C^2$ \end{document}-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[10]

Lin Du, Yun Zhang. \begin{document}$\mathcal{H}_∞$\end{document} filtering for switched nonlinear systems: A state projection method. Journal of Industrial & Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035

[11]

Renato Huzak. Cyclicity of degenerate graphic \begin{document}$DF_{2a}$\end{document} of Dumortier-Roussarie-Rousseau program. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1305-1316. doi: 10.3934/cpaa.2018063

[12]

Karim Samei, Arezoo Soufi. Quadratic residue codes over \begin{document} $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$ \end{document}. Advances in Mathematics of Communications, 2017, 11 (4) : 791-804. doi: 10.3934/amc.2017058

[13]

James Tanis. Exponential multiple mixing for some partially hyperbolic flows on products of \begin{document}$ {\rm{PSL}}(2, \mathbb{R})$\end{document}. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 989-1006. doi: 10.3934/dcds.2018042

[14]

Theodore Tachim Medjo. Pullback \begin{document}$ \mathbb{V}-$\end{document}attractor of a three dimensional globally modified two-phase flow model. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2141-2169. doi: 10.3934/dcds.2018088

[15]

Hideaki Takagi. Times until service completion and abandonment in an M/M/\begin{document}$ m$\end{document} preemptive-resume LCFS queue with impatient customers. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018028

[16]

Wenqiang Zhao. Random dynamics of non-autonomous semi-linear degenerate parabolic equations on \begin{document} $\mathbb{R}^N$ \end{document} driven by an unbounded additive noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2018065

[17]

Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729

[18]

Po-Chun Huang, Shin-Hwa Wang, Tzung-Shin Yeh. Classification of bifurcation diagrams of a $P$-Laplacian nonpositone problem. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2297-2318. doi: 10.3934/cpaa.2013.12.2297

[19]

Nikolaos S. Papageorgiou, George Smyrlis. Positive solutions for parametric $p$-Laplacian equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1545-1570. doi: 10.3934/cpaa.2016002

[20]

Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure & Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941

2016 Impact Factor: 0.801

Article outline

Figures and Tables

[Back to Top]