# American Institute of Mathematical Sciences

• Previous Article
Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application
• CPAA Home
• This Issue
• Next Article
Cyclicity of degenerate graphic $DF_{2a}$ of Dumortier-Roussarie-Rousseau program
May 2018, 17(3): 1295-1304. doi: 10.3934/cpaa.2018062

## Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system

 1 Department of Mathematics, Indian Institute of Technology Madras, Chennai-600036, India 2 Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA 3 Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

* Corresponding author: R. Shivaji.

Received  March 2016 Revised  August 2016 Published  January 2018

In this paper we study the positive solutions to the
 $n\times n$
 $p$
-Laplacian system:
 $\begin{equation*}\begin{cases}-\left(\varphi_{p_1}(u_1')\right)' = \lambda h_1(t) \left(u_1^{p_1-1-\alpha_1}+f_1(u_2)\right),\quad t\in (0,1),\\-\left(\varphi_{p_2}(u_2')\right)' = \lambda h_2(t) \left(u_2^{p_2-1-\alpha_2}+f_2(u_3)\right),\quad t\in (0,1),\\\quad\quad\quad\vdots\qquad\,\: =\quad\quad\quad\quad\quad\quad \vdots\\-\left(\varphi_{p_n}(u_n')\right)' = \lambda h_n(t) \left(u_n^{p_n-1-\alpha_n}+f_n(u_1)\right),~~\, t\in (0,1),\\\quad\,\,\,\, u_j(0)=0=u_j(1); ~~ j=1,2,\dots,n, \\ \end{cases}\end{equation*}$
where
 $\lambda$
is a positive parameter,
 $p_j>1$
,
 $\alpha_j\in(0,p_j-1)$
,
 $\varphi_{p_j}(w)=|w|^{p_j-2}w$
, and
 $h_j \in C((0,1),(0, \infty))\cap L^1((0,1),(0,\infty))$
for
 $j=1,2,\dots,n$
. Here
 $f_j:[0,\infty)\rightarrow[0,\infty)$
,
 $j=1,2,\dots,n$
are nontrivial nondecreasing continuous functions with
 $f_j(0)=0$
and satisfy a combined sublinear condition at infinity. We discuss here a bifurcation result, an existence result for
 $\lambda>0$
, and a multiplicity result for a certain range of
 $\lambda$
. We establish our results through the method of sub-super solutions.
Citation: Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062
##### References:
 [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 229-256. [2] Y. H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional p-Laplacian, J. Differential Equations, 229 (2006), 620-709. [3] R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators, J. Korean Math. Soc., 37 (2000), 665-685. [4] R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, Lecture Notes in Pure and Appl. Math., 109 (1987), 561-566. [5] R. Shivaji and B. Son, Bifurcation and multiplicity results for classes of $p,q$ Laplacian systems, Topol. Methods Nonlinear Anal., 48 (2016), 103-114.

show all references

##### References:
 [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 229-256. [2] Y. H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional p-Laplacian, J. Differential Equations, 229 (2006), 620-709. [3] R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators, J. Korean Math. Soc., 37 (2000), 665-685. [4] R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, Lecture Notes in Pure and Appl. Math., 109 (1987), 561-566. [5] R. Shivaji and B. Son, Bifurcation and multiplicity results for classes of $p,q$ Laplacian systems, Topol. Methods Nonlinear Anal., 48 (2016), 103-114.
Bifurcation of solution from the origin.
Bifurcation for all $\lambda>0.$
Multiplicity results for certain range of $\lambda$ .
 [1] Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $p$-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070 [2] Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252 [3] Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109 [4] Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016 [5] Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011 [6] Genghong Lin, Zhan Zhou. Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1723-1747. doi: 10.3934/cpaa.2018082 [7] VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $p(x)$-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003 [8] Lianjun Zhang, Lingchen Kong, Yan Li, Shenglong Zhou. A smoothing iterative method for quantile regression with nonconvex $\ell_p$ penalty. Journal of Industrial & Management Optimization, 2017, 13 (1) : 93-112. doi: 10.3934/jimo.2016006 [9] Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124 [10] Sanjiban Santra. On the positive solutions for a perturbed negative exponent problem on $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1441-1460. doi: 10.3934/dcds.2018059 [11] Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077 [12] Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007 [13] Chengxiang Wang, Li Zeng, Wei Yu, Liwei Xu. Existence and convergence analysis of $\ell_{0}$ and $\ell_{2}$ regularizations for limited-angle CT reconstruction. Inverse Problems & Imaging, 2018, 12 (3) : 545-572. doi: 10.3934/ipi.2018024 [14] Qianying Xiao, Zuohuan Zheng. $C^1$ weak Palis conjecture for nonsingular flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1809-1832. doi: 10.3934/dcds.2018074 [15] Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058 [16] Lin Du, Yun Zhang. $\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method. Journal of Industrial & Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035 [17] Renato Huzak. Cyclicity of degenerate graphic $DF_{2a}$ of Dumortier-Roussarie-Rousseau program. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1305-1316. doi: 10.3934/cpaa.2018063 [18] María Anguiano, Alain Haraux. The $\varepsilon$-entropy of some infinite dimensional compact ellipsoids and fractal dimension of attractors. Evolution Equations & Control Theory, 2017, 6 (3) : 345-356. doi: 10.3934/eect.2017018 [19] Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅱ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074 [20] Shu-Cherng Fang, David Y. Gao, Gang-Xuan Lin, Ruey-Lin Sheu, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅰ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1291-1305. doi: 10.3934/jimo.2016073

2016 Impact Factor: 0.801

## Tools

Article outline

Figures and Tables